
Trey W. Walters
Fellow ASME

Applied Flow Technology,

2955 Professional Place,

Suite 301,

Colorado Springs, CO 80904

e-mail: treywalters@aft.com

Robert A. Leishear
Fellow ASME

Leishear Engineering, LLC,

205 Longleaf Court,

Aiken, SC 29803

e-mail: leishear@aol.com

When the Joukowsky Equation
Does Not Predict Maximum
Water Hammer Pressures
The Joukowsky equation has been used as a first approximation for more than a century
to estimate water hammer pressure surges. However, this practice may provide incorrect,
nonconservative, pressure calculations under several conditions. These conditions are
typically described throughout fluid transient text books, but a consolidation of these
issues in a brief paper seems warranted to prevent calculation errors in practice and to
also provide a brief understanding of the limits and complexities of water hammer equa-
tions. To this end, various issues are discussed here that result in the calculation of pres-
sures greater than those predicted by the Joukowsky equation. These conditions include
reflected waves at tees, changes in piping diameter, and changes in pipe wall material, as
well as frictional effects referred to as line pack, and the effects due to the collapse of
vapor pockets. In short, the fundamental goal here is to alert practicing engineers of
the cautions that should be applied when using the Joukowsky equation as a first approxi-
mation of fluid transient pressures. [DOI: 10.1115/1.4044603]

Introduction

The rigorous study of water hammer reaches back into the 19th
century [1,2]. Among the excellent text books on water hammer
are those of Thorley [3], Wylie and Streeter [4], Swaffield and
Boldy [5], Leishear [6,7], and Chaudhry [8].

The field of water hammer is well established in academia as
well as in industry, where industry is often tasked with designing
complicated piping systems sometimes many kilometers in length.
Further, engineers in industry are typically under budgetary and
schedule constraints and often need to make decisions with some-
times incomplete and imperfect information. As a result, in many
cases engineers in industry rely on quick, handbook formulas to
make decisions based on estimates. One such powerful and impor-
tant formula for water hammer is usually credited to Joukowsky
[9] and is therefore often called the “Joukowsky equation.” Other
names that one finds in industry for this equation are, in various
forms, the “basic water hammer equation,” the “instantaneous
water hammer equation,” and the “maximum theoretical water
hammer equation.” Note that research in recent years showed that
researchers prior to Joukowsky discovered this same equation, but
Joukowsky’s name is most often associated with this equation.
For more on the history of water hammer, see Tijsseling and
Anderson [10].

Just two decades ago water hammer was still largely considered
by industry to be a niche specialty. As a result, water hammer stud-
ies were often outsourced to specialized and experienced consul-
tants. In the last two decades, there has been a significant growth in
the availability of user-oriented (i.e., graphically based and menu-
driven) commercial software for water hammer simulation [2].

While there is certainly an overall appreciation for the water
hammer phenomenon in industry, mistakes are easily made when
using the simplified Joukowsky equation. This equation can be
mistakenly misunderstood in industry to be a worst case, conserv-
ative equation. A clear understanding is demanded with respect to
the situations where nonconservative pressure estimates are
obtained when using this equation.

Academic papers acknowledge that the Joukowsky equation is
not always conservative, but that knowledge does not always

make its way into industrial applications. The purpose of this
paper is to identify for the practicing engineer those situations
where the Joukowsky equation does not provide worst case, con-
servative pressure predictions. This knowledge should result in
safer and more cost-effective piping systems.

The Joukowsky Equation

The Joukowsky equation relates the increase in piezometric
head or pressure resulting from an instantaneous reduction in
velocity (often conceptualized as an instant valve closure). Water
hammer theory historically started under the purview of civil
engineers for large-scale water works projects. As such, Joukow-
sky presented his equation in terms of piezometric head (e.g., see
Thorley [3], Wylie and Streeter [4], Swaffield and Boldy [5], and
Chaudhry [8])

DHJ ¼ �aDV=g (1)

The fundamental relationship between head change and pressure
change is given by

DP ¼ qgDH (2)

Hence, the Joukowsky Eq. (1) can also be written in a form more
frequently used by mechanical engineers [6,7]

DPJ ¼ �qaDV (3)

where DPJ equals the pressure change due to a fluid transient
(note that some call this the potential surge), q is the density, a is
the wave speed (also known as the celerity), and DV is a change
in fluid velocity. Equations (1) and (3) are both equally valid
equations to communicate the instantaneous velocity reduction
principle.

An important parameter in Eqs. (1) and (3) is the wave speed,
“a.” The wave speed expresses the propagation velocity of a pres-
sure wave in a pipe. It is less than the liquid acoustic velocity
(speed of sound in the unconfined liquid) and depends on the pipe
material and liquid in the pipe, as well as on the external pipe sup-
ports and piping dimensions. It can be predicted with modest
accuracy by equations developed in the literature and can also be
measured in installed systems. See the previously cited texts for
more information on wave speed and analytical prediction
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methods. In zero-g systems (such as those found in some space
system applications), Eq. (1) is undefined when dividing by zero
g. Equation (3) formulation retains applicability in such cases.
This topic is explored in more depth in Walters [11].

Research in recent years on waterhammer in viscoelastic pipes
shows that such pipe does not strictly follow the Joukowsky equa-
tion. For the purposes of this paper, one can consider the conclu-
sions as being primarily applicable to perfectly elastic pipes. This
is outside the scope of this paper but interested readers can see
Urbanowicz and Firkowski [12] for more on this topic.

Throughout this paper the authors refer to both Eqs. (1) and (3)
interchangeably, where these two equations are understood to be
essentially equivalent.

Unappreciated Limitations of the Joukowsky Equation.
Undoubtedly, Eq. (1) was a significant contribution to the practice
of piping engineering at the turn of the 20th century. Even at that
time, many of the limitations to applying Eq. (1) were discussed.
However, practicing engineers may be unaware of these limita-
tions, and engineering handbooks often gloss over these limita-
tions for brevity.

In principal, Eq. (1) only claims validity the moment after the
velocity decrease (e.g., valve closure). However, practicing
engineers often apply it as if it retains validity both immediately
after the velocity decrease/valve closure as well as at all times
thereafter, assuming that no other independent transients occur.

Since Eq. (1) is often applied in this manner, the limitations of
this equation are discussed with respect to its validity after the ini-
tial transient occurs. These limitations are as follows:

� straight, constant diameter piping of uniform material, wall
thickness, and structural restraints;

� uniform pipe friction;
� minimal friction pressure drop in piping (explained in a later

section on link pack);
� minimal fluid–structure interaction (FSI) with the piping and

supports;
� no cavitation or gas release;
� no trapped, or entrained, gases in the piping (i.e., it is initially

100% full of liquid);
� no external heat transfer that can change any of the piping

and fluid physical properties or cause phase changes;
� constant liquid density and constant bulk modulus;
� one-dimensional fluid flow;
� linearly elastic piping material.

Example 1. Joukowsky Equation Calculation. To introduce
the equations, consider an example that applies Eqs. (1) and (3).
This example is adapted from Chaudhry [8]. Compute the condi-
tions in a 0.5 m (1.64 ft) diameter pipe conveying oil. Determine
the pressure increase if the steady volumetric flow rate of 0.4 m3/s
(14.1 ft3/s) is instantaneously stopped at the downstream end.
Assume that the oil density is 900 kg/m3 (56.2 lbm/ft3) and the
wave speed is 1291 m/s (4236 ft/s)

A ¼ pD2=4 ¼ 0:196 m2ð2:11 ft2Þ (4)

DV ¼ DQ=A ¼ �2:04 m=s ð�6:68 ft=sÞ (5)

From Eq. (1)

DHJ ¼ �aDV=g ¼ �ð1291 m=sÞð�2:04 m=sÞ=ð9:81 m=s2Þ
¼ 268 m ð880 ftÞ (6)

From Eq. (3)

DPJ ¼ �qaDV ¼ �ð900 kg=m3Þð1291 m=sÞð�2:04 m=sÞ
¼ 2367 kPa ð343 psiÞ (7)

Note that this is the pressure increase due to an instantaneous
velocity decrease at a downstream valve. To obtain the peak pres-
sure at the valve, the pressure change must be added to the pre-
existing, steady-state, static pressure.

Exploring Joukowsky Equation Limitations. To understand
the conditions when Eq. (3) can be exceeded, test or field data are
referenced and are reinforced with analytical explanations and
solutions when available. Finally, numerical simulations are used
to explore different conditions.

The numerical simulation tool used in this study is referenced
in Ghidaoui et al. [2] and is commercially available (see Applied
Flow Technology [13]). This software uses the widely accepted
Method of Characteristics. It includes both the Discrete Vapor
Cavity Model and the Discrete Gas Cavity Model (DGCM) for
modeling transient cavitation and liquid column separation. For
more information on the Discrete Vapor Cavity Model and
DGCM, see Bergant et al. [1] and Wylie and Streeter [4]. Consid-
erations of frequency-dependent friction and damping due to FSI
are not included in the numerical simulations.

Three applications where Eq. (3) may not be conservative are:

(1) transient cavitation and liquid column separation,
(2) line pack, and
(3) piping system reflections (networks, components, area

changes, and surge suppression devices).

Transient Cavitation and Liquid Column Separation

When a negative transient pressure wave reduces the local pres-
sure in the piping system to the vapor pressure of the liquid, vapor
is generated. The terminology covering this area is not completely
consistent in the literature. Liquid column separation can be con-
sidered to exist when the vapor volume is such that it encom-
passes the entire cross section of the pipe. Hence, the continuous
“column” of liquid is no longer intact and it separates.

A more modest situation occurs when the vapor is either
smaller in volume and/or distributes itself along a length of pipe
such that the liquid stays more or less intact. A bubbly portion of
the liquid in the piping exists but may not encompass the entire
pipe cross section.

It is not the purpose of this paper to explain the details of this
complex phenomenon. See Bergant et al. [1] for more information
and references on this important aspect of water hammer. For the
purposes of this paper, we will refer to this entire situation as tran-
sient cavitation. From an analytical point of view, it is well known
that predicting water hammer behavior when transient cavitation
is occurring, or has recently occurred, is extremely difficult. The
examples presented here demonstrate this point.

Bergant et al. [1] reported that Joukowsky himself was “the first
to observe and understand column separation.” When transient
cavitation occurs, the normal mechanism of water hammer wave
propagation is disrupted. It is possible for liquid velocities to
become larger than the original velocity (before cavitation begins
at that location), and the wave reflection processes in the liquid
phase [4,6,7] become exceedingly more complex. In short, when a
cavity collapses, the pressure increase can be much higher than
Eq. (3) predicts.

Example 2. Vapor Collapse. Martin [14] (Fig. 6, x/L¼ 1)
presents the experimental evidence of pressures rising above those
predicted by Eq. (1) following the transient cavitation. Figure 1
shows Martin’s data plotted against a numerical simulation that
used the DGCM in Applied Flow Technology [13]. The simula-
tion in Fig. 1 accounted for the varying supply pressure as
reported by Bergant et al. [1], (Fig. 4). Equation (1) pressure rise
is predicted to be 104 m (340 ft) of water resulting in a maximum
pressure of 171 m (560 ft) near 0.1 s. Cavitation begins at this
location near 0.3 s. Both experiment and simulation in Fig. 1 show
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a peak pressure of about 235 m (769 ft) near 0.6 s. A simulation
using constant supply pressure (not shown) produces similar
results to Fig. 1. These data indicate pressures can exceed Eq. (1)
when transient cavitation occurs.

The simulation assumed a wave speed of 1230 m/s (4035 ft/s), a
Darcy friction factor of 0.031 and used 12 computing sections.
The valve was modeled as a linear decrease in flow over 25 ms.
The maximum vapor size was predicted to be 1.6 cm3 (0.27%
of the computing volume).

Practical Vapor Collapse Advice for Engineers. Check the
results to determine if the negative pressure from Eq. (3)
subtracted from the steady-state operating pressure drops below
the vapor pressure (i.e., 2 kPa, 0.3 psia, for water at room tem-
perature). This occurs either downstream of a valve immediately
after closure or upstream of the valve after the wave reflection
and the negative wave arrives. If so, then Eq. (3) may not yield
a worst case, conservative, maximum pressure. A more detailed
numerical simulation should be considered. Figure 2 helps to
understand this statement. In Fig. 2 at left, the sum of the oper-
ating pressure and the negative Joukowsky Eq. (3) is above the
vapor pressure and cavitation is not possible. In Fig. 2 at right,
the sum of the operating pressure and the negative Joukowsky
Eq. (3) is below the vapor pressure and cavitation is then
possible.

Changes in elevation also lead to conditions that cause the for-
mation of vapor pockets and vapor collapse. Note that cavitation
may occur at high points in the piping, where flow separation
occurs.

Line Pack

The phenomenon of line pack is another complexity that occurs
during fluid transients. It is not the purpose of this paper to explore
line pack in full detail. Liou [15] offers a detailed discussion of
line pack and a new, powerful method for predicting the peak
pressure resulting from a combination of line pack and Eq. (1)
(often called the “potential surge” in the context of line pack).
Additional discussion can also be found in Thorley [3], Wylie and
Streeter [4], Chaudhry [7], and Kaplan et al. [16].

Liou’s introductory paragraph [15] offers an excellent summary
of line pack:

“In pipeline transients, frictional resistance to flow generates line
packing, which is a sustained pressure increase in the pipeline behind
the water hammer wave front after the closure of a discharge valve.
This phenomenon is of interest to cross-country oil pipelines and
long water transmission mains because the sustained pressure
increase can be very significant relative to the initial sudden
pressure increase by water hammer and can result in unacceptable
overpressures.”

Fig. 1 Example 2—experimental and numerical predictions of pressures during transient
cavitation, compared to the maximum predicted Joukowsky pressure (Eq. (1))

Fig. 2 Diagram to help determine the possibility of transient cavitation
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Line pack is most dramatic when frictional pressure drop is sig-
nificant. As Liou suggests, line pack is often associated with
highly viscous fluids (e.g., oil) and longer pipelines even with
relatively low viscosity fluid such as water. But even on lower
frictional pressure drop systems, the line pack phenomenon can be
observed.

Pipeline hydraulic engineers familiar with water hammer, typi-
cally, have a strong appreciation for line pack. On the other hand,
plant system engineers who deal with smaller scale piping systems
often do not have the same appreciation.

Interestingly, few cases for field measurements of line pack are
found in the literature. Numerical predictions are easier to find (as
referenced in the Introduction section). Even with limited field
measurements, line packing is common knowledge among fluid
transient engineers.

Along with Liou’s explanation [15], quoted above, he goes
deeper into the basic mechanism that causes line pack. Specifi-
cally, when a valve is instantly closed, and the first water hammer
wave propagates inside the pipe, it fails to bring the fluid to a zero

velocity throughout the entire pipe except right at the closed
valve. The fluid behind the wave thus still has forward velocity
toward the valve and that causes the pressure at the valve to
slowly increase above the Joukowsky pressure (Eq. (1)). This
pressure increase behind the wave is the phenomenon known as
line pack.

Example 3. Line Pack. To better understand line pack, con-
sider the horizontal pipe shown in Fig. 3, using the characteristics
listed in Table 1. This example expands on Example 1. where the
simplified Example 1 above neglected friction effects, this exam-
ple considers the Darcy (Moody) friction factor, f, with respect to
pressure changes. Figure 4 shows the simulation results for 500 s.
The piping was modeled using 100 sections, and the valve was
modeled as a fixed flow rate which drops to zero instantly.

Consider what the line pressure will be once the valve has
closed, and all transients have steadied out. The answer is trivial:
the line pressure will be 10,000 kPa (1450 psi) at all points based
on the upstream pressure and no flow or elevation change. How
much did the final pressure increase at the valve? The pressure
increased 3362 kPa (6638–10,000) or 487 psi (962.8–1450). This
pressure increase does not depend on water hammer and is a result
of the recovery of pressure at the valve previously lost to friction
when the pipeline was flowing. We will therefore call this the
“friction recovery pressure,” DPfr.

Equation (3) predicts the maximum Joukowsky pressure
increase at the valve due to water hammer (DPJ) is 2367 kPa
(343 psi) as shown in Example 1. That is where many engineers
stop when evaluating water hammer. But that neglects friction
recovery pressure. To get a maximum possible pressure increase,
one needs to account for the recovery of pressure from friction.
One quick estimate is to add the friction recovery pressure to
Eq. (3) pressure, since both contribute to the pressure increase in
the piping. Adding the two together one obtains a maximum pos-
sible pressure increase of

DPmax ¼ DPJ þ DPfr ¼ 5729 kPa ð831 psiÞ (8)

This estimate provides a very conservative answer, where the
pressures to be added occur at two different times: one time
occurs when the valve closes; the other time occurs later when the
system comes to equilibrium, and all transients have died out
(e.g., due to friction).

Fig. 4 Example 3—predicted pressure transient at the valve for the system shown in Fig. 3 for 500 s

Fig. 3 Example 3—horizontal pipe system description

Table 1 Input data for Example 3, assuming instantaneous
valve closure

L 50 km (31.1 miles)

D 0.5 m (1.64 ft)

A 1291 m/s (4236 ft/s)

F 0.018

Q 0.4 m3/s (14.1 ft3/s), 1440 m3/h (6340 gpm)

DV �2.04 m/s (�6.68 ft/s)

Pin 10,000 kPa (1450 psi), fixed

Pvalve 6638 kPa (962.8 psi), upstream initial pressure

DPpipe 3362 kPa (487.6 psi), initial pipe pressure drop

DPfr DPpipe

P 900 kg/m3 (56.2 lbm/ft3)
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Note two conclusions from this analysis. First, the friction
recovery pressure is different at every point along the pipeline and
obtains a maximum at the valve since the valve is the furthest
point along the pipeline and thus experiences the most friction
pressure drop. Second, the friction recovery pressure is a quick
and conservative estimate of the maximum pressure. In reality, by
the time the friction pressure recovery occurs, Eq. (3) pressure
spike has attenuated (see Leslie and Tijsseling [17] for more on
friction and attenuation). The new method discussed by Liou [15]
endeavors to predict the sum of the friction recovery pressure and
the attenuated Eq. (3) spike. It can be shown that Liou’s method
predicts the following:

DPmax ¼ 5311 kPa ð770 psiÞ (9)

This value is lower than the quick and conservative method of
Eq. (8). How does it compare to an actual numerical simulation?
Figs. 4 and 5 show the answer to that. The Liou method predicts
the peak pressure exceedingly well.

Figure 4 shows numerical analysis results for the first 500 s, and
also shows the predicted pressure increase from the Joukowsky
equation (Eq. (3)). Figure 5 shows these same numerical analysis
results for the first 200 s. Additionally, shown in Fig. 5 is the sud-
den pressure increase expressed by the Joukowsky equation
(Eq. (3)), the pressure increase from line pack, the Liou [15]
method for calculating pressure increase, and the friction recovery
pressure. Note that the sum of Eq. (3) pressure from the Joukow-
sky equation and the friction recovery pressure is conservatively
higher than the numerical simulation or Liou’s pressure

Fig. 6 Example 2—evidence of line pack effect in experimental results (Martin [14])

Fig. 5 Example 3—predicted pressure transient at the valve from the system shown in Fig. 3
for 200 s with additional details on the various pressure rise estimation methods
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prediction. Finally, it is clear from Figs. 4 and 5 that the actual
pressure increase significantly exceeds that predicted from
Eq. (3).

Further Comments on Line Pack. As seen in Fig. 5, the maxi-
mum pressure using the friction recovery pressure (12,367 kPa,
1794 psi) is conservatively higher than the actual maximum
(11,967 kPa, 1736 psi) and the Liou method (11,949 kPa,
1733 psi). Note that this system is based on oil, a relatively high
viscosity fluid. For practical applications, use of the friction recov-
ery pressure results in conservative maximum pressures.

As mentioned earlier, published experimental/field test evi-
dence for line pack is difficult to find. One of the signs of line
pack is the increasing pressure right after the valve has instantly
closed. This phenomenon can be observed in Figs. 4 and 5 after
valve closure until the pressure peak at about 75 s. Interestingly,
Fig. 1 is redrawn as Fig. 6 using a different scale for emphasis
where line pack is clearly identified. Note that the friction recov-
ery pressure is about 5 m (16 ft) of water in Fig. 6. Martin’s data
use water and a relatively short pipe (102 m) showing that line
pack also happens in short, low viscosity systems.

For completeness, Fig. 1 simulation results were compared with
and without the varying tank pressure reported by Bergant et al.
[1], (Fig. 4). The line pack in the simulated results was very similar
between the two cases. This further confirms that the 5 m (16 ft)
pressure rises above Eq. (1) in Fig. 6 is a result of line pack.

Practical Line Pack Advice for Engineers. We have shown
that Eq. (3) does not predict maximum pressures when line pack
occurs. For any system with appreciable frictional pressure drop,
the line pack effect will be pronounced. A quick and conservative
way to estimate maximum line pressures is to add Eq. (3)
Joukowsky pressure increase to the friction recovery pressure as
shown in Eq. (8).

Piping System Pressure Wave Reflections

Water hammer wave reflections can occur for many reasons
including:

� branching/tees,
� piping diameter changes,
� valves and fittings which result in any diameter change and/

or introduce a local pressure drop,
� dead ends,
� pumps,
� tanks or reservoirs,
� accumulators,
� blockages in pipes,
� leaks in pipes,
� vibrating elbows,
� entrapped air pockets,
� wave speed changes due to piping material or wall thickness

changes, and
� frictional characteristics changes.

In all of these cases, an abrupt change in the wave propagation
occurs at a transition. In any of these cases where a transition of
material or structural characteristics occurs, both a reflected wave
and a transmitted wave will also occur at that transition [6,7].

All following examples use Applied Flow Technology [13] and
are based on water.

Example 4: Reflections in Piping Networks. In the past, some
believed that piping networks always reduced the maximum pres-
sure of water hammer waves [18]. While this may be true in some
cases, Karney and McInnis call this belief “transient folklore.”
They considered this comparative example for two piping sys-
tems, as described in Figs. 7 and 8. An instant valve closure in the
straight pipe system of Fig. 7 yields an initial pressure increase as

predicted by Eq. (3). What about the networked system in Fig. 8
with instant valve closure?

Figure 9 shows simulation results which, as expected, yield
essentially the same results as Karney and McInnis [18]. Note
how network system pressures exceed straight system pressures in
Fig. 9, where results are presented for straight and networked
piping systems for instant valve closures. Clearly, the networked
system in Fig. 8 yields higher pressures than the straight system of
Fig. 7. These results show that, in some cases, networked systems
yield pressure increases significantly greater than the maximum
Joukowsky prediction (Eq. (3)).

Equation (3) predicts a pressure increase of 130 m (427 ft) of
water for this system. This result is also shown in Fig. 9. The peak
pressure of 191 m (627 ft) is also shown. This pressure increase is
47% higher than the increase predicted from the Joukowsky
equation.

Note, to achieve the results shown in Fig. 9, a valve Cv of 1390
was used in the system from Fig. 7, and a Cv of 1384 was used in
the system from Fig. 8. The valve Cv’s need to be different to
match the head loss values in Figs. 7 and 8 as well as to maintain
the specified flow rates. The system was modeled with 25 sections
in the shortest pipe.

Example 5. Reflections From Diameter Changes. This exam-
ple is the same as Fig. 7 except that the diameter of pipe 2 has
been increased to 1.17 m, and the valve Cv has been changed to
1381 to match the same overall flowrate as Fig. 7. The valve is
again closed instantly. Note that the diameter of 1.17 m was
chosen to give the same effective flow area as the sum of the areas
from pipes 2 to 4 from Fig. 8. See system in Fig. 10.

Figure 11 shows the results. Similar to Example 4, Eq. (3) is
exceeded. Also, the close similarity of results between Figs. 9
and 11 leads one to ask whether the pressures in Example 4 are
more a result of the pipe network as discussed in Ref. [18] or the
effective area change at the branch closest to the valve (Fig. 8).
Having the same wave speed in Fig. 8, pipes 2 and 4 contribute to
this result. Different wave speeds in these pipes would yield a
more complicated transient than shown in Fig. 9. This system is
modeled with 25 sections in the shortest pipe.

Example 6. Reflections From Branch With Dead End. This
example is the same as Fig. 7 except that there is a branch with a
dead end (see Fig. 12). The valve is again closed instantly.

Fig. 7 Example 4—straight piping system

Fig. 8 Example 4—networked piping system
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Figure 13 shows results. Similar to previous examples, Eq. (3)
is exceeded. This system is modeled with 1 section in pipe 4
(Fig. 12) and a minimum of 25 sections in all other pipes.

Example 7. Reflections From Gas Accumulator. This exam-
ple is the same as Fig. 7 except that there is an inline accumulator
40 m from the valve. The initial gas volume was 20,000 l
(5280 gal) and a polytropic constant of 1.2. See Fig 14. The valve
is again closed instantly. This system is modeled with 1 section in
pipe 3 (Fig. 14) and a minimum of 25 sections in all other pipes.

Figure 15 shows the results. Similar to previous examples, the
predicted maximum pressure from Eq. (3) is exceeded.

Further Comments on Systems With Wave Reflections.
Real systems often have many pressure wave reflection points
which lead to complicated wave propagation patterns. Figure 16
shows simulation results at various times for Fig. 10 system, with

Fig. 10 Example 5—piping system with diameter change

Fig. 9 Example 4—simulation results using Ref. [13] for Figs. 7 and 8 at the valve for straight
and networked systems (adapted from Karney and McInnis [18])

Fig. 11 Example 5—simulation results for Figs. 7 and 10 at the valve for straight pipe and
pipe with diameter change systems

Fig. 12 Example 6—piping system with a branch and dead end
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wave speed in pipe 2 changed from 1000 to 900 m/s. It is clear
that the pressure and flow distribution become increasingly more
complicated as time progresses even though the initial transient
began as a single wave due to instant valve closure. This system is
modeled with a minimum of 500 sections in each pipe in order to
show a steep wave front in Fig. 16. The wave speed of 900 m/s in
pipe 2 was chosen to introduce asymmetry in the wave reflection
times in pipe 1 compared to pipes 2 and 3 when combined.

Practical Pipe Reflection Advice for Engineers. Conclu-
sively, Eq. (3) does not predict maximum pressures when certain
pipe reflections occur. It is much harder to estimate the magnitude
of pressure surge at a reflection as there are various types of
reflections, as shown in Examples 4–7. See Parmakian [19]
for analytical approximations for water hammer at reflections.
Strongly consider using numerical methods.

Dynamic Stresses. Although outside the scope of this work,
dynamic stresses merit further comment. When pressures are sud-
denly applied due to water hammer, the expected static stress is
multiplied by a dynamic load factor (DLF) to obtain the actual
dynamic stress exerted on the piping. For elastic hoop stresses,
DLF< 4 when a steep fronted water hammer wave travels along
the bore of a pipe [6,7]. For elastic bending stresses, DLF< 2 for
a single elbow, but the DLF can be increased up to DLF< 4 for
tight U-bend axial stresses and Z-bend bending stresses. As the
pressure is more gradually applied, the DLF approaches 1 for
hoop stresses and bending stresses, which is the case for line pack.
A full FSI analysis gives more insight into dynamic pipe stresses
and is essential in some cases [20], but precautions are in order

Fig. 13 Example 6—simulation results for Figs. 7 and 12 at the valve for straight pipe and
branch with dead end systems

Fig. 14 Example 7—piping system with a gas accumulator

Fig. 15 Example 7—simulation results for Figs. 7 and 14 at the valve for straight pipe and gas
accumulator systems
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for FSI as well, and some FSI analyses do not consider hoop
stresses at all (see Refs. [6,7], and [21]).

Conclusions

The Joukowsky equation should be used judiciously in piping
systems for several conditions:

(1) piping systems that contain tees;
(2) piping systems that contain changes in pipe diameter, pipe

material, pipe wall thickness, or frictional coefficients;

(3) piping systems where increased pressures due to line pack
may be an issue (examples are long pipelines and/or higher
viscosity fluids);

(4) systems where pressures drop to the vapor pressure of the
liquid in the piping system;

(5) systems that contain entrapped pockets of condensable or
noncondensable gas.

All in all, when these complex conditions are present in piping
systems, numerical methods are preferred to the simplified

Fig. 16 Simulation results at various simulation times for Fig. 9 system (with wave speed changed in pipe 2–900 m/s) showing
pressure and flow rate profiles and how wave patterns become more complicated over time
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Joukowsky equation to prevent a misunderstanding of system per-
formance. Significant mistakes can be made by using the simpli-
fied Joukowsky equation without a more complete awareness of
its limitations.
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Nomenclature

a ¼ wave speed, m/s (ft/s)
A ¼ pipe cross-sectional area, m2 (ft2)

Cv ¼ valve flow coefficient, gpm=
ffiffiffiffiffiffiffiffi

psid
p

D ¼ pipe inside diameter, m (ft)
f ¼ friction factor, dimensionless (Darcy/Moody)
g ¼ gravitational acceleration, 9.81 m/s2 (32.174 ft/s2)
H ¼ piezometric head, m (ft)
P ¼ pressure, kPa (psi)
Q ¼ volumetric flow rate, m3/s (ft3/s)
V ¼ velocity, m/s (ft/s)

DHJ ¼ piezometric head change, Joukowsky Eq. (1), m (ft)
DPfr ¼ friction recovery pressure, kPa (psi)
DPJ ¼ pressure change, Joukowsky, Eq. (3), kPa (psi)

DPmax ¼ maximum total pressure, kPa (psi)
q ¼ liquid density, kg/m3 (lbm/ft3)

Abbreviation

DGCM ¼ discrete gas cavity model
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