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ABSTRACT 
Changes in the operation of piping systems – like valve 

closures or pump starts – propagate pressure waves that travel 

at acoustic velocity throughout the fluid. These pressure waves 

have considerable effect on forces, potentially generating 

dynamic loads upwards of 10,000 lbf (50 kN) in common 

configurations. 

Some estimation methods used in industry for estimating 

transient forces neglect terms that may be important in some 

cases. Calculating forces due to these transients without 

simplification for transient liquid or gas flow is presented here 

in detail. 
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NOMENCLATURE 
𝐹 Generic Force 

𝑅 Reaction Force 

𝑎  Wavespeed 

𝐹𝑒𝑠𝑡 Estimated Maximum Force 

𝐶𝐿 Characteristic Ratio 

ℝ  Flow Resistance 

1. INTRODUCTION

1.1 Motivation 
Many advanced techniques exist for determining stress and 

strain on piping systems. Safe use of these tools is only possible 

if the driving forces are determined accurately. 

Force calculations rapidly become complex even in static 

systems and fluid systems are rarely static. Pressure is often 

considered the dominant driver of force and thus the only effect 

of interest, an overly simplified approach which neglects real 

physical effects. 

Fluid transients make the situation even more complex. 

Sudden changes in system operation – like valve closures or 

pump starts – propagate pressure waves throughout the entire 

system which directly impact the load that must be carried by 

piping. Pressure waves are strongly coupled to velocity waves, 

which means momentum and frictional losses are also transient. 

These must all be considered for a full representation of transient 

force. 

The complexity of calculating forces due to fluid transients 

has led to, at worst, the effect being neglected entirely or being 

handled by simple correction factors. Even those aware of the 

transient nature often consider only pressure terms. In some 

cases, such simplifications are reasonable, but in other cases the 

simple approach considerably miscalculates the actual forces. 

Beyond the desire of the design engineer to avoid excessive 

stresses, limits for occasional loads are specified in standards 

such as ASME B31. ASME B31.1-101.5.1 specifically indicates 

that loads due to fluid transients shall be considered [1]. Similar 

statements are made in ASME B31.3 and B31.4 [2] [3]. To 

ensure the code is met, a method with high confidence should be 

used. 

The authors are of the opinion that, as with most fluid 

transient analyses, engineers should not speculate on whether 

such simplifications are acceptable for their system and should 

instead remove all doubt by computing the true force with the 

method outlined herein. 

1.2 Historical Background 
The fundamentals that will be discussed here are not new. 

In fact, the approach taken is entirely based on simple principles 

such as Newton’s Laws. Applying these laws correctly to an 

assembly of piping under transient conditions has, however, not 

been adequately described in a plain manner to the knowledge of 

the authors. 

Discussion of component reactions due to specific effects, 

such as the reaction due to flow around a bend, or shear due to 

wall friction, can be found in nearly any introductory fluids 

textbook [4]. These cases are often considered in academic 

isolation, making application in the field challenging. Great care 
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must be taken to maintain a consistent system of forces and 

account for all terms of interest – something introductory texts 

do not cover. 

A true accounting of the transient force must consider all 

transient terms, not just component forces that exist at the control 

volume boundaries. Across an acoustic, mass flows are not 

equal, and the temporal effect must be considered. Accounting 

for these transient behaviors is a complicated step often omitted 

from a typical analysis but is not a new concept; the method was 

noted in some detail in [5]. Unfortunately, the theory found in 

[5] was used primarily to develop a simple estimation, which can 

introduce significant error [6].  

One of the most common approaches to calculating transient 

forces is to first determine accurate transient flow results and 

then simply use transient pressures at the control volume 

boundaries multiplied by local flow areas to determine boundary 

component forces. The overall reaction force is calculated as the 

sum of these boundary component forces. While well-

intentioned, using endpoint pressures only is effectively a 

steady-state approach taken at every step because it neglects 

terms such as the acceleration of fluid within the control volume 

or behavior of the fluid through devices. 

 

1.3 Assumptions 
The approach outlined here is not without assumptions of its 

own. Most importantly, deformation of piping is not considered 

– the entire assembly is assumed to be completely rigid. 

Results can therefore be regarded as the reaction forces 

required to keep a piping assembly in place. Specific reactions at 

supports can be determined for statically determinant systems. 

The presented method serves only to determine the overall 

reaction – effects of determinacy or deformation are out of scope. 

External elements such as heavy valve stems, pump skids, 

or wind are not considered. Forces due to thermal expansion, 

multi-phase flows, or other complex fluid dynamics are also 

neglected. 

Flow and all related parameters within the piping are 

considered in a one-dimensional context. That is, pressure, 

velocity, or any other parameter, are considered averaged values 

throughout the cross-section of flow. 

 
1.4 Numerical Examples 

The examples discussed in Part 1 are intentionally simple in 

nature and serve only to enhance discussion on the theory and 

method behind the force calculation. For more in depth examples 

and results, see Part 2 [7].  

 

1.5 Reactions vs. Forces on a Piping Assembly 
This paper is focused on the determination of reaction forces 

on a piping assembly. These are forces required to keep a system 

from moving, which must be provided by external supports – for 

example, a reaction due to a mass on a surface is the normal force 

acting upward to counteract weight. 

Piping stress analysts may be concerned with the net force 

acting on a piping assembly – which is equal in magnitude but 

opposite in sign to the reaction. 

This paper uses the reaction because it is a straightforward 

unifying concept. Care should be taken by the engineer using 

these methods to be sure the sign of the force matches their 

intent. 

 
2. FORCES IN STAGNANT SYSTEMS 

Newton’s Second Law states that the net force acting on a 

system is equal to its change in momentum per change in time – 

a stagnant system has no change in momentum so the net force 

must be zero. Such a system is shown in Figure 1. 

The pipe walls are cut by the control surface at 𝐵 and 𝐶. It 

is not the intent here to determine reactions at each location, but 

instead to determine overall values for the general reactions 𝑅𝑥 

and 𝑅𝑦. 

There are only a few forces to consider, the first being 

weight 𝐹𝑊. Also acting on the control volume surface are the 

pressure forces 𝐹𝐵 and 𝐹𝐶. Because there is no flow, these are 

simply due to hydrostatic pressures. An astute observer may 

already recognize that only these forces impact the reactions. 

Nonetheless, it is instructive to consider two pressure forces 

which are internal to the system. 

  

 
FIGURE 1: FORCES IN A STAGNANT SYSTEM WITH BLIND 

FLANGE AT POINT D 

 

2.1 Internal Forces 

Internal pressure, 𝑃𝑖𝑛𝑡 , acts radially outward on the pipe 

walls. Because the flow is assumed one-dimensional and piping 

deformation is not considered, the radial pressure does not result 

in any external reaction. 

Internal pressure also acts on non-radial surfaces like the 

blind flange at point D. Pressure differential at the flange will 

certainly cause a net force 𝐹𝐷 = (𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡) × 𝐴. However, the 

resulting force is taken up by the bolts attaching the flange to the 

rest of the piping and is therefore internal to the system. 

Weight from the horizontal pipe to the flange at point D will 

also cause a significant moment, resulting in high stresses at the 

joint to the main piping. 

These types of internal or local forces are of serious concern 

and must be recognized in piping system design. However, they 

do not influence the external reactions caused by fluid transients 

of interest for this paper and will not be discussed further. 
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3. FORCES UNDER STEADY FLOW 
Under steady flow, Newton’s Second Law no longer 

indicates that the net force must be zero. Because the flow is 

steady, the mass within some control volume will be a constant 

value, but the velocities entering or exiting the control surface 

can vary. Therefore, Newton’s Second Law may take the 

common form in Equation 1. 

 

𝐹⃗𝑛𝑒𝑡 = 𝑚̇Δ𝑉⃗⃗ = 𝑚̇(𝑉⃗⃗𝑜𝑢𝑡 − 𝑉⃗⃗𝑖𝑛) (1) 

 

Note that the inlet and outlet velocities of a constant area 

system are only equal for incompressible flows. For gas flows, 

even a straight run will see velocity and thus momentum 

changes. The examples in Sections 3 and 4 assume 

incompressible flow to simplify discussion but can easily be 

adapted to compressible flow. 

 

3.1 Changes In Momentum 

The velocity 𝑉⃗⃗ is a vector, so directional changes like flow 

around a bend will result in a net force, as shown in Figure 2.  

Of course, a change in velocity does not require a change in 

direction, but could also be attained via change in area, like the 

nozzle shown in Figure 3. 

 

 
FIGURE 2: NET FORCE FROM FLOW AROUND BEND 

 

 
FIGURE 3: NET FORCE FROM FLOW THROUGH REDUCTION 

 

Without reaction forces, the systems in Figures 2 and 3 will 

move. The net force on either system can be determined either 

with Equation 1, or by summing all component forces. In these 

systems, this sum is the reaction plus the net pressure force 

(𝐹𝑛𝑒𝑡 = 𝑅𝑥 + 𝐹𝑃,𝑛𝑒𝑡). The reaction is therefore the net pressure 

force subtracted from the net force as determined by Newton’s 

Second Law (𝑅𝑥 = 𝑚̇Δ𝑉 − 𝐹𝑃,𝑛𝑒𝑡). 

In Figure 2, 𝑚̇Δ𝑉 is negative and 𝐹𝑃,𝑛𝑒𝑡 is positive, so 𝑅𝑥 

must also be negative. In Figure 3, 𝐹𝑃,𝑛𝑒𝑡 is again positive, but 

𝑚̇Δ𝑉 is positive. However, the fluid mechanics of the situation 

mean 𝐹𝑃,𝑛𝑒𝑡 is always larger than 𝑚̇Δ𝑉, and 𝑅𝑥 is again negative. 

 

3.2 Friction 
Friction is a shear force opposing fluid flow at fluid/solid 

interfaces. The diagram in Figure 4 shows a section of a straight 

run, with a control volume drawn around the fluid surface – only 

fluid is inside the volume. 

 

FIGURE 4: CONTROL VOLUME AROUND FLUID ONLY 

 

In Figure 4, the only forces are the upstream and 

downstream pressure forces and friction. There is no momentum 

change, so the net force must be zero, meaning the friction and 

pressure forces counterbalance one another. 

A control volume could also be drawn around the piping, in 

a cylindrical annulus excluding all fluid as in Figure 5. 

The only fluid force acting on the piping wall is the friction 

force, equal and opposite in sign from the control volume in 

Figure 4. It must therefore be balanced by an external reaction. 

 

 
FIGURE 5: CONTROL VOLUME AROUND PIPE ONLY 

 

The reaction force could be determined by first finding the 

friction force from the pressure differential with a fluid control 

volume, and then finding the reaction from the friction force with 

the pipe control volume – a complexity which can be avoided 

entirely by considering friction an internal force and drawing the 

control volume to include both piping and fluid as in Figure 6. 

 

FIGURE 6: CONTROL VOLUME AROUND BOTH PIPE/FLUID 

 

The frictional force does not act on the control volume 

shown in Figure 6, making the solution straightforward. 

 

3.3 Devices 
Complex equipment is, at first glance, difficult to handle. 

Devices like valves have complex flow paths with a multitude of 

frictional forces, all in different directions. A centrifugal pump 

has these issues with the addition of a work term. 



 4 © 2022 by ASME 

Determining these internal effects is extremely difficult. 

Fortunately, it is not required – the same approach outlined in the 

previous section can be taken, drawing a control volume around 

both device and fluid as in Figure 7. 

 

FIGURE 7: CONTROL VOLUME AROUND GLOBE VALVE 

 

As in Figure 6, there are two pressure forces and a reaction 

force. Additionally, a change in piping diameter like that in 

Figure 3 is possible, adding a momentum term. 

 

4. STEADY-STATE FORCE ON A PIPING ASSEMBLY 
The cases considered so far look at components of a piping 

system in isolation, which is not always of practical use. A piping 

assembly may contain direction and area changes, pressure 

losses due to friction and devices, all of which have been 

discussed. 

As a reminder, the presumed intent of the force analysis is 

to determine the reactions required to keep the entire system in 

place. Other internal forces are important but not related to these 

reactions. 

Consider the system in Figure 8. A large diameter upstream 

pipe makes a right-angle turn at location 1. At location 2, the 

piping diameter is reduced, causing an increase in flow velocity. 

The valve at location 3 induces a large pressure loss, and finally 

the flow exits the system at an angle 𝛼 above the horizontal at 

location 4. Straight runs of piping between each location are 

denoted with 𝐻 through 𝑇. The following two subsections 

present differing methods for determining the overall reaction on 

the indicated control volume. 

The control surfaces are defined such that they lay on the 

exterior piping surface and such that flow enters and leaves the 

system normal to the control surface. 

 

   
FIGURE 8: A COMPLEX PIPING ASSEMBLY 

 

4.1 Component Reaction Method 
One approach is to determine individual internal reactions 

for each component (1-4 and 𝐻-𝑇) and appropriately combine 

them. For simplicity, the following example considers only 𝑅𝑥, 

the overall reaction in the 𝑥 direction. 

As indicated by Figure 2, location 1 requires a local reaction 

dependent on the change in direction of the velocity. There is no 

flow into the component in the 𝑥 direction, and the flow out is 

entirely in 𝑥. There is a pressure force acting to the left, from the 

upstream side of pipe 𝐽 (𝑃𝐽
𝑢𝑝

), and an ambient pressure force 

acting to the right. Rather than handling the ambient pressure 

force independently, it is easiest to use gauge pressures (𝑃𝑔,𝐽
𝑢𝑝

). 

This makes the local reaction: 

 

𝑅𝑥,1 = 𝑚̇𝑉𝐽 + 𝐴𝐽𝑃𝑔,𝐽
𝑢𝑝 (2) 

 

At location 4, there is also a change in direction, but it is not 

at a right angle. The flow into the component is entirely in 𝑥, but 

flow out is in both 𝑥 and 𝑦. Only velocity in the 𝑥 direction 

contributes to the local reaction in 𝑥. Similarly, there are two 

pressure forces acting in in the 𝑥 direction: 

 

𝑅𝑥,4 = 𝑚̇(𝑉𝑇 cos 𝛼 − 𝑉𝑆) − 𝐴𝑆𝑃𝑔,𝑆
𝑑𝑛 + 𝐴𝑇𝑃𝑔,𝑇

𝑢𝑝
cos 𝛼 (3)  

 

At location 2, there is an increase in velocity which requires 

a local reaction as shown by Figure 3. 

 

𝑅𝑥,2 = 𝑚̇(𝑉𝐾 − 𝑉𝐽) − 𝐴𝐽𝑃𝑔,𝐽
𝑑𝑛 + 𝐴𝐾𝑃𝑔,𝐾

𝑢𝑝 (4) 

 

All pipes have local reactions due to friction. The pressure 

loss due to friction acts on the flow area, as described by Figure 

6. The reaction direction opposes the flow direction. Equation 5 

is written for pipe 𝐾 – similar equations exist for the other pipes. 

 

𝑅𝑥,𝐾 = −𝐴𝐾(𝑃𝑔,𝐾
𝑢𝑝

− 𝑃𝑔,𝐾
𝑑𝑛 ) (5) 

 

Tackling the local reaction for location 3 follows similarly, 

using the form described by Figure 7. 

 

𝑅𝑥,3 = −(𝐴𝐾𝑃𝑔,𝐾
𝑑𝑛 − 𝐴𝑆𝑃𝑔,𝑆

𝑢𝑝
) (6) 

 

The overall reaction can be determined by adding all these 

component reactions together. 

 

𝑅𝑥 = +𝑚̇𝑉𝐽 + 𝐴𝐽𝑃𝑔,𝐽
𝑢𝑝

 

−𝐴𝐽(𝑃𝑔,𝐽
𝑢𝑝

− 𝑃𝑔,𝐽
𝑑𝑛) 

+𝑚̇(𝑉𝐾 − 𝑉𝐽) − 𝐴𝐽𝑃𝑔,𝐽
𝑑𝑛 + 𝐴𝐾𝑃𝑔,𝐾

𝑢𝑝
 

−𝐴𝐾(𝑃𝑔,𝐾
𝑢𝑝

− 𝑃𝑔,𝐾
𝑑𝑛 ) (7) 

−𝐴𝐾𝑃𝑔,𝐾
𝑑𝑛 + 𝐴𝑆𝑃𝑔,𝑆

𝑢𝑝
 

−𝐴𝑆(𝑃𝑔,𝑆
𝑢𝑝

− 𝑃𝑔,𝑆
𝑑𝑛) 

+𝑚̇(𝑉𝑇 cos 𝛼 − 𝑉𝑆) − 𝐴𝑆𝑃𝑔,𝑆
𝑑𝑛 + 𝐴𝑇𝑃𝑔,𝑇

𝑢𝑝
cos 𝛼 

 

There are many repeated terms of opposing sign in Equation 

7. This is because many of the individual component control 

volumes adjoin one another. For example, the valve has a 

pressure force acting on it from the fluid in the pipe, and the pipe 

has a fluid force acting on it from the valve. These forces are 

equal and opposite, so approaching the system piece by piece 

results in many duplicate calculations. The reaction simplifies to: 

 

𝑅𝑥 = 𝑚̇𝑉𝑇 cos 𝛼 + 𝐴𝑇𝑃𝑔,𝑇
𝑢𝑝

cos 𝛼 (8) 
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4.2 Acceleration Reaction Method 
Another approach is to consider certain forces internal to the 

system once more. Rather than approaching each component 

within the control volume individually, the control volume as a 

whole can be analyzed directly. 

Ignoring everything inside the control volume, flow in at 

location 1 is vertical and can be completely ignored for the 

horizontal reaction. There is a change in velocity and pressure 

force in the 𝑥 direction at location 4 if 𝛼 is not ±90°, which must 

be counterbalanced. 

It is no coincidence that Equation 8 results exactly from this 

approach. The Component Reaction Method required many 

steps to arrive at the same result, each with its own opportunity 

for error. Drawing a control volume around the entire assembly 

simplifies the process dramatically. 

Note that both the momentum term and pressure term 

depend on the orientation of flow into and out of the assembly. 

If the inflow and outflow orientations are parallel, no 

perpendicular force is possible. A common piping configuration 

is a piping bridge, expansion loop, or other straight run between 

two right-angle bends (see Figure 9). In such configurations, the 

steady reaction in the straight run direction must be zero. 

 

5. FORCES UNDER TRANSIENT FLOW 
 
5.1 Transient Flow Fundamentals 

It is not intended to discuss in detail the methods of solution 

for fluid transients in systems here. However, some basics are 

necessary to understand the impact an acoustic wave has on 

forces. 

Fluid in a piping system propagates pressure waves that 

travel at acoustic velocity in response to disturbances just like 

sounds in free air. Fluids in piping systems are generally either 

liquids or highly compressed gasses, which increases the speed 

of sound and the energy contained by the wave. The speed of the 

wave can also be modulated by the flexibility of piping material 

(especially for liquid transients) and other effects – the actual 

speed of the wave is called wavespeed, 𝑎. 

Changes in fluid velocity and pressure are strongly coupled. 

Taking an action like closing a system valve will necessarily 

change the flow velocity and thus the pressure, a relationship 

described by the Joukowsky Equation.  

 

Δ𝑃 = −𝜌𝑎Δ𝑉 (9 − 𝐽𝑜𝑢𝑘𝑜𝑤𝑠𝑘𝑦) 

 

The Joukowsky Equation is strictly true only for differential 

changes but can sometimes be used as an approximation for 

finite duration changes. Equation 9 and other simple fluid 

transient estimations do not account for real fluid effects [8]. A 

numerical simulation based on the fundamental mass, 

momentum, and energy equations should be used to determine 

the actual pressures and velocities accurately. Complex but 

important phenomena such as cavitation and transient friction 

should be considered. Several such tools exist, many of them 

based on the Method of Characteristics [9] [10] [11]. 

The following discussions on force calculation presume an 

accurate transient flow solution exists. Modifying the underlying 

flow solution with, for example, differing unsteady friction 

models will impact the numeric force results, but will not impact 

the force methodology. Discussion on the fundamental accuracy 

of the flow results is outside the scope of this paper. 

 

5.2 Approximate Transient Forces 

Accurate forces depend on more than just pressure drop. 

The Endpoint Pressure Method described in Section 5.2 is 

common, but it is often inaccurate and is presented here only to 

simply describe the mechanics of acoustic waves. For example, 

a steady-state pressure drop due to friction would seem to 

translate to a steady-state reaction using this approach, but as 

discussed in Section 4.2, no such force exists. 

 

Consider a flow of water through a large expansion loop, as 

in Figure 9. All numerical values required to analyze this system 

fully in simulation are given in Table 1. 

 
FIGURE 9: EXPANSION LOOP WITH DOWNSTREAM VALVE 

 

Using the Joukowsky Equation, the pressure rise at the valve 

can be estimated as 323 psi (2.23 MPa). A pressure wave of this 

magnitude travels backward from the valve through the entire 

system at the wavespeed, 4800 ft/s (1460 m/s). Along with the 

pressure wave, there is a velocity wave travelling at the same 

speed – the fluid upstream of the wave continues flowing at 5 ft/s 

(1.524 m/s) whereas the fluid downstream of the wave has come 

to a standstill. 

The pressure delta across the loop (𝑃𝑢𝑝 − 𝑃𝑑𝑛) is the primary 

driver of force and will help illustrate the wave’s effect on the 

loop. Figure 10a shows transient pressure traces at the upstream 

and downstream ends of the loop. As expected, the pressure rise 

at the downstream end occurs first, as it is closer to the valve. 

The same pressure rise occurs later at the upstream end. 

 

  
FIGURE 10: BEHAVIOR UNDER INSTANT CLOSURE 
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The force can be estimated by looking only at the endpoint 

pressures and the flow area. This method is termed here the 

Endpoint Pressure Method. For this example, the estimated 

maximum force, 𝐹𝑒𝑠𝑡 = Δ𝑃 × 𝐴, is about 36,600 lbf (163 kN). 

Figure 10b shows the behavior of the force over time. 

 

TABLE 1: NUMERICAL INPUTS & RESULTS FOR FIGURE 9 

IN
P

U
T

S
 

Value USC Units SI Units 

Inner Diameter 12.00 in 30.48 cm 

Friction Factor 0 0 

Length 𝐿 240.0 ft 73.15 m 

Initial Velocity 5.000 ft/s 1.524 m/s 

Wavespeed 4,800 ft/s 1,460 m/s 

Fluid Density 62.40 lbm/ft3 1,000 kg/m3 

Valve Close Time 0 s 0 s 

R
E

S
U

L
T

S
 Joukowsky 

Pressure Rise 323.2 psi 2.228 MPa 

Estimated 

Maximum Force 36,560 lbf 162.6 kN 

Force Duration 0.05 s 0.05 s 

 

If the valve does not close instantly, the behavior is 

different. The pressure at any given point will not rise instantly 

but will be a function of the valve position vs. time. Assuming 

the valve instead closes such that flow decreases linearly over 

0.1 seconds, the wave will be 480 feet (146 meters) long. The 

behavior now appears as in Figure 11. 

 

  
FIGURE 11: BEHAVIOR UNDER NON-INSTANT CLOSURE 

 

Only half of the wave can exist inside the loop at any given 

time, meaning the maximum force has been reduced by half. The 

duration of maximum loading is the same, but the duration of 

any loading is tripled. 

A characteristic ratio (Equation 10) can be defined from the 

speed of generation of the transient, the wavespeed, and the 

length of the piping assembly in question. 

 

𝐶𝐿 ≡
𝐿

𝑎Δ𝑡
(10) 

 

If 𝐶𝐿  is greater than one, it indicates that the entire wave can 

fit inside the assembly, and the force will be the maximum value. 

If it is less than one, it reports the fraction of the wave within the 

assembly, and the force will be attenuated. 

𝐶𝐿 is a simplified metric that neglects real effects, but the 

general concept is sound for liquid flows. For gas flows, the 

width of the wave can compress and expand, which is discussed 

briefly in Section 7. 

 

5.3 Complete Transient Reactions with the 
Acceleration Reaction Method 
Calculating transient reactions with the Endpoint Pressure 

Method, as touched on in Section 5.2, neglects the effects of 

momentum entering and exiting the system. Even if these 

momentum terms are included, there is no true accounting of 

internal transient effects. Taking the upstream and downstream 

pressures and velocities at some given time and using those to 

calculate a force is a steady-state approach that completely 

neglects the internal effects. 

Instead, Newton’s Second Law should be applied directly to 

the system, without unnecessary simplification (Equation 11). 

 

𝐹⃗𝑛𝑒𝑡 =
𝑑𝑚𝑉⃗⃗⃗⃗ ⃗⃗⃗

𝑑𝑡
=

𝑑

𝑑𝑡
∫ 𝜌𝑉⃗⃗𝑑𝕍 (11)  

 
The net force is also equal to the summation of applied 

forces. This includes all external forces acting on the control 

volume, such as weight or pressure forces at a fluid boundary, 

and the reaction (Equation 12). 

 

𝐹⃗𝑛𝑒𝑡 = ∑ 𝐹⃗𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + 𝑅⃗⃗ (12) 

 

With Reynolds Transport Theorem, Equation 11 can be 

expanded to Equation 13. 

 

𝐹⃗𝑛𝑒𝑡 = ∫
𝜕

𝜕𝑡
𝜌𝑉⃗⃗𝑑𝕍

𝐶𝕍

+ ∮ 𝜌𝑉⃗⃗(𝑉⃗⃗ ⋅ 𝑛̂)𝑑𝐴
𝐶𝑆

(13) 

 

The control volume is chosen specifically so that any flow 

entering or leaving intersects it normal to the control surface, 

which means the flux integral can be simplified as in Equation 

14, where 𝜙 is positive one for outflows and negative one for 

inflows. Note that the right-hand side of Equation 14 is 

effectively the same as the right-hand-side of Equation 1. 

 

∮ 𝜌𝑉⃗⃗(𝑉⃗⃗ ⋅ 𝑛̂)𝑑𝐴
𝐶𝑆

= ∑(𝜙𝜌𝑉𝐴)𝑉⃗⃗ = ∑ 𝜙𝑚̇𝑉⃗⃗ (14) 

 

With 𝑑𝕍 = 𝐴𝑑𝑥 and 𝜌𝐴𝑉 = 𝑚̇, the transient term of 

Equation 13 can be modified as shown in Equation 15.  

 

∫
𝜕

𝜕𝑡
𝜌𝑉⃗⃗𝑑𝕍

𝐶𝕍

= ∫
𝜕𝑚⃗⃗⃗̇

𝜕𝑡
𝑑𝑥

𝐶𝕍

(15) 
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Simplification of this term is more difficult and cannot be 

done without introducing discretization error. To simplify 

further, several actions are taken. First, consider only a single 

pipe of length 𝐿. Second, recognize that the velocity in each pipe 

is colinear with the pipe axis, and thus the contribution of 

Equation 15 to the reaction is also colinear with the pipe. Finally, 

in typical systems, the fluid volume within piping far exceeds the 

volume within devices (e.g., valves or pumps) – in such cases it 

is safe to treat the transient term as negligible and disregard it. 

Therefore, each of 𝑀 straight runs can be treated independently 

and summed together via Equation 16. 

 

∫
𝜕𝑚⃗⃗⃗̇

𝜕𝑡
𝑑𝑥

𝐶𝕍

= ∑ ∫
𝜕𝑚⃗⃗⃗̇

𝜕𝑡
𝑑𝑥

𝐿

0

𝑀𝑝𝑖𝑝𝑒𝑠

𝑚=1

(16) 

 

Of course, there are not an infinite number of values 

available, but only some discrete set of 𝑁 nodes. The integral can 

be split into an integral for each of these nodes via Equation 17. 

 

∑ ∫
𝜕𝑚⃗⃗⃗̇

𝜕𝑡
𝑑𝑥

𝐿

0

𝑀𝑝𝑖𝑝𝑒𝑠

𝑚=1

= ∑ ∑ ∫
𝜕𝑚⃗⃗⃗̇

𝜕𝑡
𝑑𝑥

δ𝑥

0

𝑁𝑛𝑜𝑑𝑒𝑠

𝑛=1

𝑀𝑝𝑖𝑝𝑒𝑠

𝑚=1

(17) 

 

The integral in Equation 17 must be evaluated. For a given 

step in time, the mass flow in each section can be approximated 

as a fixed value, averaged from the neighboring points. 

Averaging mass flow makes the integrand no longer a function 

of 𝑥 so it can be taken out of the integral. The temporal derivative 

also needs to be discretized (Equation 18). 

 

∑ ∑ ∫
𝜕𝑚⃗⃗⃗̇

𝜕𝑡
𝑑𝑥

𝛿𝑥

0

𝑁𝑛𝑜𝑑𝑒𝑠

𝑛=1

𝑀𝑝𝑖𝑝𝑒𝑠

𝑚=1

≈ ∑ ∑
Δ𝑚̅⃗⃗⃗̇

Δ𝑡
Δ𝑥

𝑁𝑛𝑜𝑑𝑒𝑠

𝑛=1

𝑀𝑝𝑖𝑝𝑒𝑠

𝑚=1

(18) 

 

The discretization step is the only significant approximation, 

and the error is directly dependent on the degree of the 

discretization. The final equation for the reaction is Equation 19. 

 

𝑅⃗⃗ ≈ ∑ ∑
Δ𝑚̅⃗⃗⃗̇

Δ𝑡
Δ𝑥

𝑁𝑛𝑜𝑑𝑒𝑠

𝑛=1

𝑀𝑝𝑖𝑝𝑒𝑠

𝑚=1

+ ∑ 𝜙𝑚̇𝑉⃗⃗ − ∑ 𝐹⃗𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (19) 

 

In the special, but common, case of a system such as that 

shown in Figure 9 with flow entering and exiting 90 degrees 

from a colinear arrangement of piping, the reaction in the 

colinear direction will be simplified to only the first term of 

Equation 19. In stark contrast to the Endpoint Pressure Method 

described in Section 5.2, this equation would have no pressure 

terms. 

On close inspection, the first term bears a strong 

resemblance to 𝐹 = 𝑚𝑎, which should not come as a surprise – 

Equation 19 is nothing more than a representation of Newton’s 

Second Law, specifically formulated for transient analysis of 

fluid systems. 

The Acceleration Reaction Method is so named because this 

first term is the summation of mass times acceleration values at 

each discrete point. 

 

5.4 Complete Transient Reactions with the 
Component Reaction Method 
The approach taken for a steady reaction in Section 4.1 can 

also be taken for the transient reaction. However, Equation 7 

cannot be used directly because it does not account for internal 

transient effects.  

Looking back at Figure 5, it is clear that flow within the pipe 

creates a frictional force that must be opposed by a component 

reaction. Under general transient flow, different areas of the pipe 

will see different velocities and thus different frictional forces. 

Accounting for this requires discretization just like the one 

performed in Equation 18. Determining the effect of friction 

during a transient is not as simple as looking at the pressure drop. 

Instead, a resistance ℝ is used to characterize friction, which is 

determined from appropriate transient values for a particular 

node. 

 

ℝ ≡
𝑓Δ𝑥

2𝜌𝐷𝐴2
=

Δ𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝑚̇2
(20) 

 

Equation 5 for a single pipe then becomes Equation 21 under 

transient conditions. The absolute value on 𝑚̇ is used to ensure 

the sign of the reaction is correct for both flow directions. 

 

𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ≈ − ∑ 𝐴ℝ|𝑚̅̇| 𝑚̅̇

𝑁𝑛𝑜𝑑𝑒𝑠

𝑛=1

(21) 

 

When replacing the frictional terms in Equation 7 with 

Equation 21, none of the pressure terms cancel, making the result 

much more unwieldy than Equation 19. Nonetheless, it is 

possible to take this approach, summing individual pressure and 

momentum terms along with the friction terms from Equation 21 

– the Component Reaction Method. 

Note that the friction factor 𝑓 and density 𝜌 are not in 

general constant, and ℝ must be updated for each node every 

time step. 

 

5.5 A Note on Discretization and Accuracy 
Both Equation 7 with Equation 21 substituted in, and 

Equation 19 will – given enough computation sections – return 

the same true result. Due to the differences in the methods, coarse 

discretizations will show minor differences. 

It should also be noted that coarse discretizations will not be 

able to track the wave or its shape as well as finer discretizations, 

meaning the force results will be lower in accuracy. For example, 

if the simple case described by Figure 9 is analyzed with many 

numerical nodes, the square wave depicted by Figure 10 results. 

However, as the number of nodes decreases, the waveform will 

appear to change shape as in Figure 12. In this instance, the 

maximum force is still predicted correctly, but this is not always 

the case. 
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FIGURE 12: EFFECT OF DISCRETIZATION ON REACTIONS 

 

6. NOTABLE IMPACTS VS TRADITIONAL RESULTS 
The effects of friction, momentum, and complexities of 

inline equipment become more evident when directly comparing 

the behavior of simplified methods and Equation 19. The simple 

method used for comparison here is the Endpoint Pressure 

Method (Section 5.2). 

The examples in Section 6 are all based on Figure 9/Table 

1. In all cases, a surge of pressure is generated by instantly 

halting a flow of equal velocity. Therefore, it seems reasonable 

to calculate a theoretical Joukowsky Maximum (with Equation 9 

pressure rise and flow area) that is equal for every case. 

For a summary of inputs and results, see Tables 2 & 3.   

 

6.1 Friction 
As a baseline, it is useful to consider a frictionless case. If 

there are no pressure losses, the Joukowsky Maximum, Endpoint 

Pressure Method, and Equation 19 all correctly determine the 

maximum force, as seen in Figure 13. With no friction or 

momentum flux terms, the endpoint pressures are, in fact, the 

only forces acting on the assembly. 

 

 
FIGURE 13: COMPARISONS FOR FRICTIONLESS FLOW 

 

With friction, the behavior is noticeably different, as 

indicated by Figure 14.  

First, there is a steady-state pressure drop – the upstream 

pressure will be higher than the downstream pressure. Therefore, 

the Endpoint Pressure Method indicates an incorrect steady-state 

reaction in the negative (downstream) direction. 

Second, internal pressure continues to rise after the initial 

surge under frictional flow, a phenomenon known as line pack 

[8] or recovery of pressure loss due to friction. 

Once the wave enters the assembly, the higher downstream 

pressure forces the piping in the downstream direction, requiring 

a reaction in the upstream direction. However, pressure is not the 

only source of force acting on the piping. Upstream of the wave, 

flow continues at the original velocity and imparts a frictional 

force on the pipe. The friction force also acts in the downstream 

direction, increasing the required reaction. The contribution of 

friction to the reaction will decrease as the wave moves and more 

fluid comes to a halt. 

The Endpoint Pressure Method will instead interpret the 

losses due to friction as lowering the reaction. The comparison 

is shown in Figure 14. The impact of friction is generally small 

and is exaggerated in Figure 14, but it can be significant in long 

pipelines or in highly viscous flows. 

 

 
FIGURE 14: COMPARISONS FOR FRICTIONAL FLOW 

 

6.2 Inline Losses 
If a static loss, such as an orifice, was placed midway 

through the assembly, there may be significant pressure loss in 

steady-state. Such a device has no significant impact on transient 

endpoint pressures until well after the wave enters the system. 

The steady-state pressure loss problem exists here as well, 

but it is due to the loss at the device instead of in the piping. The 

Endpoint Pressure Method neglects the reaction at the device, so 

the overall reaction appears unchanged when the wave passes 

through the device. The result is similar to the previous case, but 

the impact on the forces plotted in Figure 15 is, perhaps, 

surprising. 

 

 
FIGURE 15: COMPARISONS FOR AN INLINE LOSS 

 

6.3 Inline Closure 
The instantly closing emergency stop valve is moved from 

its downstream location to the midpoint of the control volume, 

as in Figure 16. Frictional losses through the valve and piping 

are negligible in steady-state. 
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FIGURE 16: CONFIGURATION FOR INLINE CLOSURE 

 

Figure 17 shows Equation 19 calculating a maximum 

reaction double that of the apparent Joukowsky Maximum. 

When the valve closes, it propagates an increase in pressure 

upstream, which is paired with the propagation of an equivalent 

decrease in pressure downstream. 

 

 
FIGURE 17: COMPARISONS FOR INLINE VALVE CLOSURE 

 

Failing to capture the maximum force is not an error with 

the Joukowsky equation, but rather a misapplication. The 

Joukowsky equation can correctly predict the change in pressure 

on both sides of the valve, but the reaction depends on the overall 

pressure difference – not that generated by a single wave. 

In this simple example it is easy to recognize that there are 

two waves of opposite signs and the force must be doubled. 

However, taking this approach to wave analysis is not 

recommended in realistic systems with complex behaviors. 

Attempting to determine how to modify the rule quickly 

becomes more overwhelming. It is easy to get confused applying 

the Joukowsky equation and great care should be taken using it 

to validate results – if it is even used at all. 

An additional, more shocking, result occurs with the 

Endpoint Pressure Method. While it correctly determines the 

magnitude of the force, the sign is not correct, the timing is 

wrong, and the force seems to be maintained indefinitely. 

The instant closure of the valve propagates two waves, 

which both serve to strongly accelerate the local fluid. These 

accelerations contribute force in a common direction. After the 

waves exit the system, the system becomes stagnant – there is 

nothing left to generate force, so the reaction drops to zero. 

The Endpoint Pressure Method, however, is completely 

unaware of the pressure waves until they reach the endpoints. 

The sudden pressure differential, with the upstream pressure 

larger than the downstream pressure, will appear to pull the 

system in the upstream direction, requiring a negative reaction. 

 

6.4 Inline Reduction 
Finally, consider the case where the instantly closing valve 

is again downstream, and a reducer exists at the assembly 

midpoint, as in Figure 18. The downstream velocity remains the 

same as in the other cases – the upstream piping is larger 

diameter making the upstream velocity lower. 

 

 
FIGURE 18: CONFIGURATION FOR INLINE REDUCTION 

 

Figure 19 shows that the Endpoint Pressure Method 

dramatically misestimates the steady-state force, as not only is 

the upstream static pressure higher, but it acts on a larger area. 

In fact, the area difference means the reaction is predicted as 

negative for the entire transient, even though the true reaction is 

only ever zero or positive. 

Moreover, the Endpoint Pressure Method does not account 

for the change in momentum across the reduction. The reducer 

sees a positive local reaction (see Section 3.1), but acceleration 

of flow through the reducer reduces the reaction. This reduction 

in reaction is present until the wave passes through the reducer. 

Again, the Joukowsky Maximum seems to be violated. The 

Joukowsky approach assumed a constant flow area associated 

with the downstream velocity. However, the downstream 

pressure rise cannot simply be applied to the upstream area. 

Due to the nature of acoustic transients, the reducer will 

partially reflect the wave, even if it is lossless. The velocity will 

not stay at zero, but becomes negative, inducing a momentum 

effect not only at the reducer, but within two waves travelling in 

opposite directions as in the previous section.  

Accounting for these effects with the Endpoint Pressure 

Method or Joukowsky Equation is not straightforward. 

 

 
FIGURE 19: COMPARISONS FOR FLOW AREA REDUCTION 

 

6.5 Notes On Simplified Methods 
It is important to state with full clarity that the Joukowsky 

Equation and Endpoint Pressure Method for calculating forces 

are not incorrect so much as they are incomplete. It would not be 

difficult to mend either method in any of the above cases with 

special rules or adjustments in given cases. However, this 

becomes exceptionally difficult when complex, but common, 

situations arise. 

For example, a given assembly could have multiple changes 

in pipe diameter and a high loss valve that closes rapidly but not 

fully. It could also have connections to neighboring piping that 
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are not at a convenient right angle. The system in which it is 

operating may see several simultaneous pressure waves from 

remote events, including events like column separation. 

Calculating forces with Equation 19 may be difficult by 

hand, but compared to complex patchworked rules, it is easier 

overall and far less likely to fall victim to easily made mistakes. 

 
TABLE 2: INPUTS TO SECTION 6 EXAMPLES, AS MODIFIED 

FROM FIGURE 9 

Figure 10/13 Frictionless, instant closure 

Figure 14 

Heavy friction – 50x normal friction from an 

absolute roughness of 0.0018 in 

Figure 15 Device with K=100 inserted at midpoint of 𝐿 

Figure 16/17 

Instantly closing valve (Cv=20,000) inserted 

at midpoint of 𝐿 

Figure 18/19 

Reducer inserted at midpoint of 𝐿. Upstream 

inside diameter changed to 16 in (40.64 cm) 

 
TABLE 3: SELECTED RESULTS FROM SECTION 6 EXAMPLES 
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10/13 36,556 lbf 

162.61 kN 

36,574 lbf 

162.69 kN 

36,518 lbf 

162.44 kN 

36,518 lbf 

162.44 kN 

14 33,954 lbf 

151.03 kN 

37,425 lbf 

166.47 kN 

36,503 lbf 

162.37 kN 

37,341 lbf 

166.10 kN 

15 34,653 lbf 

154.14 kN 

36,557 lbf 

162.61 kN 

36,510 lbf 

162.40 kN 

36,510 lbf 

162.40 kN 

16/17 -73,262 lbf 

-325.89 kN 

73,262 lbf 

325.89 kN 

73,176 lbf 

325.50 kN 

73,194 lbf 

325.58 kN 

18/19 -51,563 lbf 

-229.36 kN 

56,927 lbf 

253.22 kN 

56,295 lbf 

250.41 kN 

56,295 lbf 

250.41 kN 
NOTE Joukowsky Maximum is 36,555 lbf (162.61 kN) in all cases. 
* Amplitude is defined here as the difference between the overall 

Maximum minus overall Minimum. 
† The True values were calculated with 100 nodes using the liquid 

Method of Characteristics solver AFT Impulse [11]. 

 

7. NOTES ON GAS FLOW 
The Acceleration Reaction Method (Equation 19) does not 

assume anything about the nature of the fluid, and it is equally 

valid for both liquid and gas flows. The same could be said about 

the Component Reaction Method (Equations 7 and 21), although 

determining accurate frictional values in transient compressible 

flow for force calculation is challenging. 

The behavior of gas transients differs substantially from 

liquid transients. A liquid transient analysis generally assumes 

an isothermal, constant density, constant wavespeed flow. In gas 

transients, none of these are good assumptions. As gas becomes 

compressed, it will heat up, which in turn drives up the speed of 

sound. For gas flow in the case described by Figure 9, with a 

non-instant downstream valve closure, the front of the wave will 

have a lower speed of sound than the back of the wave. 

Therefore, the amount of the wave that can be contained within 

the loop depends not only on the length of the loop, but its 

distance from the valve. The impact of gas dynamics on transient 

loads is discussed in detail in [6]. 

 
8. CONCLUSION 

The authors have seen numerous erroneous reaction 

calculations. Often, the incomplete Endpoint Pressure Method is 

used due to its apparent simplicity. To be emphatically clear: the 

Endpoint Pressure Method is very often incorrect in realistic 

situations, and the authors do not recommend its use under any 

circumstances.  

The complete Acceleration Reaction Method presented here 

is not excessively difficult to utilize if the results of a transient 

fluid simulation are available. Instead of speculating on the 

importance of the correct force, the fundamental approach is 

recommended for any liquid or gas piping system. 
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