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ABSTRACT 
One of the key assumptions in modern steam hammer load 

analysis is based on an incomplete understanding of steam wave 
behavior. Compression waves generated after a valve closure 
steepen much more quickly than previously thought. The 
resulting forces generated on pipe runs separated by elbows can 
be significantly higher than those predicted using current 
methods. To be more specific, current methods may give 
unconservative pipe force estimates – potentially resulting in 
unsafe designs. Using a more complete understanding of gas 
wave speed, quantitative examples are given which show the 
larger forces which occur as a result of wave steepening. 
Suggestions on how to improve load estimation are discussed. 

KEYWORDS 
Steam hammer, piping loads, transient simulation, transient 

compressible flow 

NOMENCLATURE 

Variables and symbols 
a wave speed (ft/s / m/s) 
A cross-sectional area (ft2 / m2) 
c acoustic (sonic) velocity (ft/s / m/s) 
D diameter (ft / m) 
F force (lbf / kN) 
K dimensionless pressure loss factor at pipe fitting 
L length (ft / m) 
LC characteristic length (ft / m) 
P static pressure (psi / kPa) 
Po stagnation pressure (psi / kPa) 
T static temperature (F / C) 
To stagnation temperature (F / C) 
t time (sec) 
tc closing time of a valve (sec) 
V fluid velocity (ft/s / m/s) 

x axial distance (ft / m) 
γ isentropic expansion coefficient  
ρ static density (lbm/ft3 / kg/m3) 
ρo stagnation density (lbm/ft3 / kg/m3) 

Subscripts 
b back (of wave) 
f front (of wave) 
J Joukowsky Eq. 
M minus (direction in pipe) 
SS steady-state 

INTRODUCTION 
One of the key unstated assumptions in modern steam 

hammer load analysis is that wave steepening is not significant 
in typical lengths of pipe runs. Recently Walters and Lang [1] 
conclusively showed that this assumption is mistaken.  

For the last four decades the standard procedure for 
estimating steam hammer piping loads resulting from valve 
closures has been the Goodling Method [2-3]. There are several 
key assumptions made in the Goodling Method. One unstated 
assumption is that acoustic waves do not appreciably steepen.  

Several papers have been published in recent years that used 
transient compressible flow numerical methods to evaluate wave 
steepening and the resultant generated forces. These papers used 
different numerical methods. Rovagnati and Gray [4-5] used an 
MOC (Method of Characteristics) tool, while Mayes, Gawande 
and Williams [6] and Mayes and Gawande [7] used a CFD tool. 
These four papers all observed wave steepening and larger forces 
than those given using Goodling or similar methods. However, 
no reasons for this behavior based on physics or theory were 
given by these authors.  

Moody and Stakenborghs [8] recently discounted the claims 
in these papers and did so using physics and theory. However, 
Walters and Lang [1] showed that the reasoning in [8] had an 
oversight and neglected to consider how changes in bulk fluid 
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velocity of the gas affected wave speed. Walters and Lang 
developed analytical relationships to show why and how fast 
wave steepening occurs. They also used a commercially 
available software tool [9] to show the same wave steepening in 
a more real-world system which included friction and real gas 
effects. They showed that pipe forces can be much higher than 
Goodling predicts. 

It will be shown in this paper what this means for steam 
hammer load analysis. Current methods of predicting forces are 
based on a mistaken assumption and are not conservative. 
Existing power station steam piping designed using the Goodling 
Method are not as safe as believed. 

 
ACOUSTIC WAVE BEHAVIOR IN STEAM FLOW 

When a valve closes in a steam line, a compression wave is 
generated upstream of the valve. This wave travels at a speed that 
depends on the bulk fluid velocity and the acoustic velocity of 
the steam. More generally, when a valve closes over some finite 
time, a family of compression waves is generated. The wave 
speed at the front of the wave family is not the same as the wave 
speed at the back of the wave family. This is due in part to a 
difference in acoustic velocities at the front and back (the back 
is at a higher temperature after the compression event and thus 
has a higher acoustic velocity) [8]. But, more importantly, the 
wave speed is different because the bulk steam velocity is 
different at the front and back of the wave family. This is 
discussed in detail using analytical relationships and diagrams 
by Walters and Lang [1]. 

It is well known that gas wave velocity, a, is a function of 
gas acoustic velocity, c, and gas bulk velocity, V: 

 
 𝑎𝑎 = 𝑉𝑉 ± 𝑐𝑐 (1) 
 

In that gas bulk velocity, V, is a vector, that makes gas wave 
velocity, a, also a vector. A compression wave like that discussed 
in this paper will follow Eq. 1 with the negative sign. A 
nomenclature distinction used here is that c represents gas 
acoustic velocity and a represents gas wave velocity. The terms 
gas wave velocity and gas wave speed are used interchangeably 
here with the understanding that both terms are vectors. Previous 
authors at times confused the concepts of gas acoustic velocity 
and gas wave velocity. This is part of the reason why wave 
steepening has been underestimated in the past.  

Walters and Lang [1] gave an analytical relationship for the 
speed of wave steepening (the speed at which the back of the 
wave family catches the front) for a perfect gas in frictionless, 
adiabatic flow: 

 
 ∆𝑎𝑎𝑓𝑓𝑓𝑓 = �𝑉𝑉𝑆𝑆𝑆𝑆 �

𝛾𝛾+1
2
�� (2) 

 
where VSS is the steady-state velocity and γ is the isentropic 
expansion coefficient. They showed that Eq. 2 is constant over 
time for frictionless, adiabatic flow of a perfect gas. 

For adiabatic flow of real gases with friction the initial speed 
of wave steepening is given by: 

 ∆𝑎𝑎𝑓𝑓𝑓𝑓 = |𝑐𝑐𝑏𝑏 − 𝑐𝑐𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑆𝑆𝑆𝑆| (3) 
 
where cb is the sonic velocity at the back of the wave family and 
cSS is the sonic velocity at the front (equal to the steady-state 
value). The bulk gas velocity at the front of the wave family is 
also the same as the steady-state gas velocity, VSS. Eqs. 2 and 3 
give the same result if the flow is frictionless and adiabatic and 
the gas is a perfect gas. 

A quantitative example will be given which demonstrates 
the validity of Eq. 3 and also shows how the speed of wave 
steepening changes over time and distance from the initiating 
transient event. In other words, Eq. 3 is not constant in the flow 
of real gases with pipe friction. 

 
ESTIMATING STEAM HAMMER LOADS USING 
GOODLING 

Estimating steam hammer loads involves the rigorous 
application of Newton’s Second Law of Motion. However, 
applying Newton’s Second Law in steam hammer is complicated 
by the fact that transient compressible flow calculations are very 
difficult to obtain. If one does not have a reasonably accurate 
transient flow solution, then one cannot reliably use Newton’s 
Second Law. This is for the simple reason that one does not know 
the necessary quantitative values in order to apply Newton. 

Further, even if one was able to arrive at a trustworthy 
transient flow solution, one has to evaluate the importance of 
every term in Newton before deciding to start discarding terms 
in order to simplify. This will be discussed later in this section. 

For now, let’s look at the Goodling Method [2-3]. A 
maximum transient force is obtained using the Joukowsky 
equation pressure difference multiplied by the flow area and an 
uncertainty factor of 1.05: 

 
 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = ∆𝑃𝑃𝐽𝐽𝐴𝐴 ∗ 1.05 (4) 

 
The Joukowsky equation here uses the gas acoustic velocity 

and not the gas wave velocity. Eq. 4 is intended to predict the 
maximum possible transient force that occurs anywhere in the 
pipe assuming no diameter changes or reflections. 

In addition, a “characteristic length” is determined from the 
following: 

 
 𝐿𝐿𝐶𝐶 = 𝑐𝑐𝑡𝑡𝑐𝑐 (5) 

 
where tc is closing time of the valve and c is the acoustic velocity 
as before.  

Using Eqs. (4-5) one can determine the maximum force in a 
pipe leg (a run of pipe between direction changes – e.g., elbows) 
using the length of said pipe run: 

 
 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐶𝐶

 (6) 
 
If the length of the pipe run leg, LLeg, is greater than the 

characteristic, LC, then the force on the leg is simply equal to the 
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maximum force Eq. 4. The force profile shape typically looks 
like Fig. 1 for cases where LLeg < LC. For more on the Goodling 
Method force profile shapes, see [2-4]. 

 
Figure 1. Typical transient force profile in pipe leg from a 
finite duration compression wave when LLeg < LC. 

 
NUMERICAL SIMULATION OF STEAM HAMMER 

The MOC has been a preferred method of simulating fluid 
transients in pipes for many decades. This is due in part to its 
unique advantages in simulating wave behavior. As noted 
earlier, References [4-5] used the MOC whereas [6-7] used CFD. 

Using the MOC to simulate gas transients in general and 
steam hammer in particular is quite difficult. The fundamental 
equations are more complicated than for liquid flow (i.e., 
waterhammer/surge) and there are three equations (mass, 
momentum and energy) rather than two. As a result, two 
important accuracy issues emerge. First, the characteristic lines 
are markedly non-linear and there are three of them (as opposed 
to only two for liquid transients). Second, the characteristic lines 
do not lay nicely along a fixed grid. This means that one has to 
interpolate along grid points in the x-t plane. Both of these 
introduce significant uncertainties for the results. 

There have been numerous MOC formulations in the 
literature. One particularly convenient formulation was 
published by Moody [10].  
 
EXAMPLE 1 

Rovagnati & Gray [4-5] appear to be the first to publish 
concerns about the Goodling Method. They used an in-house 
simulation tool which employed the Moody [10] formulation. 
Example 1 here is the same example used in [5] but here it will 
be explored in more depth. One difference here is that a different 
MOC tool is used which is of commercial quality [9] while still 
using the Moody formulation [10]. In principle, the results in [5] 
and [9] here should agree well. As you will see, in general they 
do agree but for several reasons (to be discussed) they are not in 
precise agreement. An advantage of [9] over [5] is that [9] has a 
generous feature set for reviewing and understanding the results 
– including animation capabilities which can be crucial in 
understanding pipe fluid transient results. 

 
Example 1 Problem Statement 

Note some of the problem statement data was not published 
in [5] but was included in the conference presentation – a copy 
of which was obtained from the authors of [5]. It was also 
confirmed that the presentation had a typo on pipe diameter. 

There is a steam source at near-saturation conditions which 
flows through 1980 ft (604 m) of pipe to a turbine inlet. The 

turbine inlet has a Turbine Stop Valve (TSV) which closes 
quickly to protect the turbine. All relevant data from [5] is listed 
below.  

The in-house software tool used in [5] used a simplified 
steam properties table where the steam was treated as an ideal 
gas in some fashion. This was discovered after communication 
with the authors of [5]. The commercial tool used in this paper 
[9] allows one to use ASME Steam Table data which was used 
in all simulations presented in this paper. In addition to being 
more accurate, it also has saturation line data. Early simulation 
runs showed that the initial steady-state conditions fell below the 
saturation line in Example 1. This is important for an engineer 
using simulation tools because it can impact the accuracy of the 
calculation. Therefore, after some trial and error, the source 
condition temperature was slightly increased by 2 degrees F (~1 
degrees C) such that all steady-state and transient results were 
superheated. With all the general uncertainty in engineering 
calculations, this minor change in temperature (and density) is 
negligible. 

 
• Process conditions: 

o Assume all supply conditions are stagnation 
conditions (e.g., there is no velocity at these 
conditions – e.g., inside a vessel). 

o Steam source pressure  
 Po = 1000 psia (6895 kPa) 

o Steam source non-pressures in Reference [5] 
 ρo = 2.24 lbm/ft3 (35.9 kg/m3) 
 To = 545 F (285 C)  

o Steam source non-pressures in Example 1 
using Reference [9] (To increased by 2 deg. F 
to maintain superheated conditions) 

 ρo = 2.22 lbm/ft3 (35.6 kg/m3) 
 To = 547 F (286.1 C)  

o Initial flowrate 
 1164 lbm/s (528 kg/s) 

• Turbine Stop Valve (TSV) 
o Effective closure time tc = 100 ms 
o Linear mass flowrate vs. time 

• Single horizontal pipe run  
o Length = 1,980 ft (604 m) 
o Inner diameter = 29.25 inches (0.743 m) 
o Pipe roughness = 0.0018 in. (0.046 mm) 
o Adiabatic wall 
o Seven pipe legs of 40 ft. (12.2 m) length which 

are bounded by elbows pairs (Fig. 2.) 
 Legs 1, 4, 7, 10, 13, 16, and 19  

o All other legs are 125 ft (38.1 m) except for 
Leg 20 which is 200 ft (61 m) 
 

Example 1 Goodling Method Results 
As discussed at length in [5], the Goodling Method predicts 

the same maximum force and same force profile on all seven of 
the 40 ft (12.2 m) pipe run legs (depicted in Fig. 2). 

To apply Eq. 4, one needs to calculate the pressure rise using 
Joukowsky at the TSV. To do that, one needs a reliable steady-
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state solution at the TSV for an adiabatic pipe. A reliable solution 
can be obtained using various methods. Here we will use the 
steady-state results in [9] as shown in Table 1. 
 

 
Figure 2. Schematic of Example 1 system with actual 
dimensions shown in the bullet list above for each pipe leg. 
Pipe legs with * symbol are those seven for which forces are 
calculated. Not to scale. 

 
Table 1. TSV steady-state conditions at valve inlet (exit of 

pipe at Leg 1) 

Parameter Value at TSV 
Po 972.5 psia (6705 kPa) 
P 969.4 psia (6684 kPa) 
T 542.2 F (283.4 C) 
ρ 2.157 lbm/ft3 (34.6 kg/m3) 
V 115.6 ft/s (35.3 m/s) 
c 1614 ft/s (492 m/s) 

aM = V – c − 1498 ft/s (457 m/s) 
γ 1.25 

 
Using the values in Table 1 one can calculate the Goodling 

Method parameters. The Joukowsky equation is given by: 
 

 ∆𝑃𝑃𝐽𝐽 = −𝜌𝜌𝜌𝜌∆𝑉𝑉 (7) 
 
Since the TSV closes completely, the velocity goes from 

steady-state to zero. From Eq. 7 the pressure rise is a result of the 
velocity decrease. Hence ΔV is equal to -V. With these values 
and using Eqs. 4-7 we get the results in Table 2. Note that the 
FLeg value applies to all seven of the 40 ft (12.2 m) pipe run legs. 

 
Table 2. Example 1 results for Goodling Method 

Parameter Eq. Calculated Result  
ΔPJ 7 86.9 psid (599 kPa) 
Lc 5 161.4 ft (49.2 m) 

Fmax 4 61,288 lbf (272.6 kN) 
FLeg 6 15,189 lbf (67.6 kN) 

 
 
 

Example 1 Numerical Results (Min. 40 Pipe Sections) 
Walters and Lang [1] established that the MOC method [9] 

gave results consistent with analytical results for an air system. 
Here [9] will be used on a steam system using ASME Steam 
Tables for steam properties and pipe friction. 

As will be discussed in depth more later, numerical 
simulation results are affected by selection of the number of pipe 
computational sections as well as a few other numerical 
parameters. Here we will use computational sections and 
parameters consistent with those used in [5]. This was based on 
personal communication with the authors of [5] in which they 
used a minimum of 40 computational sections per pipe. In that 
the shortest pipe was 40 ft. (12.2 m) this means computational 
sections were 1 ft (0.3 m) long for all pipes. 

Further, calculating transient forces from fluid transient 
simulation results is not as straightforward as one might think. 
Commonly, transient forces are estimated using just pressure 
differences along a pipe run leg. However, this simplification 
ignores other potentially significant contributors to the transient 
force balance. Lang and Walters [11] offer a detailed explanation 
of how to accurately calculate transient forces for liquid and gas 
transient systems. In short, the method is the same for liquids and 
gases as it is based on Newton’s Second Law of Motion. 
However, different components of the force balance may be 
more important (or less) depending on whether the fluid is liquid 
or gas. It is not known exactly how [5] calculated forces from the 
simulation results but it is guessed that it was based on 
considering only the pressure terms in Newton and neglecting 
the others. Here forces will be shown based on a full accounting 
of all terms of Newton’s Second Law [11]. Reference [9] 
incorporates everything in [11]. A comparison of forces 
calculated using [9 and 11] to the traditional ΔP*A approach will 
be given later.  

Fig. 3 shows results for transient forces using 40 
computational pipe sections. Table 3 shows the peak forces. 

The Table 3 peak transient forces can be compared to that 
predicted by the Goodling Method in Table 2. The transient force 
in Leg 1 nearest the TSV is close to that predicted by Goodling 
in Table 2. However, it is clear that the transient forces in Table 
3 Legs 4 and above are much higher than in Table 2.  

Fig. 3 can be compared to results in Rovagnati and Gray’s 
[5] Fig. 4. They show the forces with a negative sign so must be 
using a reverse x-direction coordinate system than used here. 
Regardless, Fig. 3 correlates well with that in [5] and in fact 
shows transient forces a bit higher by 15-20% than [5]. This 
could be for a number of reasons, including better accuracy using 
ASME Steam Tables and force calculation methods in [9]. The 
trend in Fig. 3 is also consistent with the more thoroughly 
explained analytical and numerical results in Walters and Lang 
[1]. However, further investigation will show that the story is 
even worse than shown in Fig. 3 when more computational 
sections are added. The use of a minimum of 40 computational 
sections per pipe was shown here to provide a better apples-to-
apples comparison between this paper and [5]. Reference [5] did 
not evaluate sensitivity of predictions to pipe sectioning. Here 
we will. 
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Figure 3. Transient force results on the pipe legs in the x 
direction for Example 1 system using minimum of 40 
sections. Results obtained using [9]. 

 
Table 3. Peak forces from Fig. 3 (min. 40 pipe sections) 

Leg 
# 

Peak Force on Pipe Leg in x Direction % 
Goodling 

lbf kN 
1 14,609 65.0 96% 
4 16,963 75.5 112% 
7 20,133 89.6 133% 
10 23,778 105.8 157% 
13 27,190 121.0 179% 
16 29,889 133.0 197% 
19 31,721 141.2 209% 

 
Example 1 Numerical Results (Min. 200 Pipe Sections) 

Two changes are made for this simulation compared to the 
previous to obtain better accuracy than in Fig. 3. The first is that 
a finer grid is used with a minimum of 200 sections per pipe. In 
that the shortest pipe is 40 ft. (12.2 m) this means computational 
sections are 0.2 ft (2.4 in., 6.1 cm) long for all pipes. 

The second simulation change is an artifact of using MOC 
for transient compressible flow. The Appendix provides a brief 
explanation. In summary, a grid and time step as shown in Fig. 
A-2 will be used here. The Fig. A-1 grid was used in obtaining 
the Fig. 3 results.  

The results are shown in Fig. 4. Table 4 summarizes the peak 
transient pressures. While Table 3 shows a peak transient force 
over twice that of the Goodling Method, Table 4 shows it as over 
three times as high! 

Clearly, comparing results from Figs. 3 and 4 show that 
there is substantial sensitivity of peak transient forces to 
computational sections used. Maybe using more than a minimum 
of 200 sections will yield even higher forces? Fig. 5 shows the 
sensitivity of peak transient forces using 5-200 pipe 
computational sections in each pipe at minimum. All cases in 
Fig. 5 use a grid like that in Fig. A-2. 

 

 
Figure 4. Transient force results on the pipe legs in the x 
direction for Example 1 system using minimum of 200 
sections. Results obtained using [9]. 

 
Table 4. Peak forces from Fig. 4 (min. 200 pipe sections) 

Leg 
# 

Peak Force on Pipe Leg in x Direction % 
Goodling 

lbf kN 
1 14,610 65.0 96% 
4 16,985 75.6 112% 
7 20,361 90.6 134% 
10 25,469 113.3 168% 
13 33,823 150.5 223% 
16 44,019 195.9 290% 
19 47,699 212.2 314% 

 
What can be learned from Fig. 5? It appears that the peak 

forces level out for pipe Legs 1, 4, 7 and 10. But pipe Legs 13, 
16 and 19 are still rising slightly. Hence, looking at Table 4, the 
peak forces are reliable for the first four legs. The final three may 
not be a true peak. Another corollary thing we learned is that 
users of numerical simulation tools for steam hammer using the 
MOC should be extra careful to make sure they are using a 
sufficient number of pipe of sections such that they are capturing 
a true maximum. For those not familiar with MOC methods, this 
is easier said than done. There is an exponential squared 
relationship for number of sections and computer run time. In 
other words, a run time for the 200-section case takes (200/40)2 
= 25 times longer than the 40-section case. 

What does this have to do with the wave steepening effect 
discussed earlier? It has everything to do with it. Let’s explore 
this further. 

Fig. 6 shows the path of the front and back of the wave 
family for the 200-section simulation. Three insightful things can 
be learned from Fig. 6. 



6  © 2022 by ASME 
 

 
Figure 5. Peak transient forces for a range of computational 
pipe sections. Results obtained using [9]. 

 
Figure 6. Positive and negative characteristic lines follow the 
front and back of the wave family for 200-sections case.  

 
First, it is clear in Fig. 6 that the back of the wave (which 

starts at 0.1 seconds) is catching up with the front (which starts 
at 0 seconds). This means that the wave family is steepening. 

Second, the initial characteristic length (Lc) is about 150 ft 
(46 m). This is hard to see in the small size of Fig. 6 but can be 

clearly seen in a larger graph. This length is shorter than the 
Goodling Method predicts in Table 2. Why? This will be 
answered shortly. 

Third, the characteristic length (if there even is one) changes 
with time. More on this below. 

On the second item above, a clue is given in Table 1. The 
steam wave speed, aM, is shown there as 1,498 ft/s (457 m/s). 
The negative sign is because the steam compression wave is 
moving from right to left in Fig. 6. 

If one uses aM in Eq. 5 rather than c one obtains: 
 

 𝐿𝐿𝐶𝐶 = 𝑎𝑎𝑀𝑀𝑡𝑡𝑐𝑐 (8) 
 
which obtains a value of 150 ft (46 m). This is consistent with 
results in Fig. 6 for characteristic length.  

A moment’s thought about the concept of characteristic 
length leads to an obvious conclusion. The characteristic length 
is attempting to capture how far a wave moves over some time 
Δt. The wave does not move at the acoustic velocity, c. It moves 
at the wave velocity, V – c, which is aM. In other words, Eq. 5 is 
not correct. Those wishing to use the Goodling Method should 
use Eq. 8 to calculate the characteristic length.  

As Fig. 6 has the wave family front and back positions with 
time, it is a simple matter to plot the wave speed of the front and 
back of the wave family. This is shown in Fig. 7. Here one can 
see that, for real gas simulations with friction, the front and back 
wave speeds are not constant with time.  

 
Figure 7. Wave velocity at front and back of wave family for 
200-sections case. 

 
Also of interest in Fig. 7 is the difference in velocities of the 

two curves when the TSV closes at 0.1 seconds. The top curve 
for the back of the wave family is roughly 1,633 ft/s (498 m/s). 
The bottom curve for the front of the wave family at 0.1 sec is 
1,499 ft/s (457 m/s). Again, these are wave velocities, a, and not 
acoustic velocities, c. 

Subtracting these two values gives the speed at which the 
back of the wave is catching up with the front, Δafb. This comes 
out to about 134 ft/s (41 m/s). 
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Now we can look back to Eq. 3. We take the values in Table 
1 for VSS and cSS but we need to know cb. We can estimate the 
pressure at the TSV at t = 0.1 by using the Joukowsky Equation 
pressure rise (Table 2) and the initial pressure in Table 1. This 
obtains a static pressure of about 1,056 psia (7,281 kPa). Taking 
the pressure rise as isentropic (as a rough estimate as it really 
isn’t isentropic because there is friction involved) obtains a 
temperature at 0.1 seconds of 560 F (293 C). From there a value 
of cb can be obtained from steam tables of 1,628 ft/s (496 m/s). 
The value from Eq. 3 Δafb is roughly 130 ft/s (40 m/s) which 
agrees fairly well with the Fig. 7 estimate above of 134 ft/s (41 
m/s). Realize this is imperfect because the Joukowsky Equation 
pressure rise is for an instant valve closure while the valve in 
Example 1 closes over 0.1 seconds. For good measure, use of Eq. 
2 (developed for a perfect gas behavior in frictionless flow [1] so 
not 100% applicable to our case either) also gets a value of 130 
ft/s (40 m/s) using Table 1 values as input. 

Putting this all together, the back of the wave is initially 
catching up with the front at about 134 ft/s (41 m/s). Over time, 
the difference between the front and back wave speeds (Fig. 7) 
decreases. This means effectively that Δafb decreases over time. 

Using results from Figs. 6 and 7 one can determine how the 
characteristic length changes over time – see Fig. 8. This is 
another way of saying that the concept of “characteristic length” 
itself is flawed. There is no characteristic length. There is an 
initial characteristic length given by Eq. 8 (not Eq. 5). But as 
time goes on and the wave family moves further from the source, 
the so-called characteristic length shrinks. This happens because 
the back of the wave catches up with the front (Fig. 6) as the 
wave steepens.  

As noted earlier, Eq. 8 predicts an initial characteristic 
length of 150 ft (46 m) which is confirmed by Fig. 8 at 0.1 
seconds. 

 
Figure 8. The length of the wave family (usually called the 
characteristic length) for 200-sections case. 
 

One can clearly see the wave steepening by looking at time 
snapshots of the pressure profile. The top graph in Fig. 9 shows 
the shape of the pressure profile in a sequence of time slices as 
the wave moves from right to left. It is clear that the wave 

steepens. For example, at t = 0.1 seconds, right after the TSV 
closed, the pressure wave does not come close to fitting inside 
the 40 ft (12.2 m) pipe Leg 1. As the wave moves to the left, each 
time slice has more of the wave fit inside the pipe leg at that 
location. Finally, when the wave reaches Leg 19 the entire wave 
fits inside the leg. This creates the maximum force as shown in 
Fig. 4. 

Also shown in Fig. 9 for interest are the corresponding fluid 
velocity, V, profiles and acoustic velocity, c, profiles. 

 
Figure 9. Profiles at various times for static pressure, fluid 
velocity and acoustic velocity for 200-sections case. Wave 
moves to the left so each profile from right to left is at a later 
time (shown at top in seconds). Physical locations for pipe 
Legs 1, 4, 7, 10, 13, 16 and 19 shown as dashed vertical lines.  

MORE ON CALCULATING FORCES 
As discussed earlier, Lang and Walters [11] discuss how to 

calculate transient forces using all terms in Newton’s Second 
Law. There is a traditional approach to calculating transient 
forces whereby only the Pressure x Area terms are used in 
Newton – neglecting all other terms. There are situations where 
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the traditional method is acceptably accurate, and there are 
situations where it is highly inaccurate. These are discussed in 
[11].  

With pressure profiles available such as shown in Fig. 9, one 
can use the traditional approach and compare that to a full force 
balance. Table 5 shows this comparison. Here, one can see that, 
at least for Example 1, the traditional approach predicts higher 
forces than the complete approach by about 10%. 

 
Table 5. Forces for 200-sections case using ΔP method and 

the complete force balance method in [9, 11]. 

Leg 
# 

Max ΔP 
(psid / kPa) 

Peak Force 
Using ΔP*A 

(lbf / kN) 

Peak Force Using 
All Terms [9, 11] 

(lbf / kN) 
1 24.2 / 167 16250 / 72 14610 / 65 
4 27.9 / 192 18758 / 83 16985 / 76 
7 33.3 / 229 22351 / 99 20361 / 91 
10 41.3 / 285 27750 / 123 25469 / 113 
13 54.3 / 374 36491 / 162 33823 / 151 
16 70.6 / 487 47435 / 211 44019 / 196 
19 76.6 / 528 51451 / 229 47699 / 212 

 
EXAMPLE 2 

This example has all the same conditions as Example 1, 
except it attempts to assess the importance of pressure losses at 
the elbow pairs.  

A K factor of 0.168 was used at all elbows. The steady-state 
pressure loss of each was roughly 0.5 psid (3.5 kPa). In that there 
were 13 elbows in this model, this added roughly 6.7 psid (46.4 
kPa) pressure drop.  

As the flowrate is constrained at 1,164 lbm/s (528 kg/s), the 
conditions at the pipe exit to the TSV (the TSV inlet) will be 
impacted. The equivalent values in Table 1 will be different – 
not dramatically different, but different. For example, Example 
1 has a steady-state pressure drop in the pipes of about 28 psid 
(190 kPa). Hence the elbows increase the pressure loss by about 
20%. 

The purpose here is not to provide all the same details given 
in Example 1. Rather, it is just to show the trends in transient 
force predictions when one accounts for elbow losses.  

Obviously, this is well beyond the reach of analytical 
solutions. The Reference [9] tool can include losses at fittings 
and components. It assumes the steady-state K factors remain the 
same during the transient simulation. As before, this simulation 
uses 200 computational sections and the grid time-step scheme 
in Fig. A-2. Fig. 10 shows the transient forces for this case while 
Table 6 summarizes the peak forces.  

Comparing Table 6 to Table 4 shows little impact on the 
pipe legs closest to the TSV. The legs farthest away (16 and 19) 
have forces 4% lower. 

 
Figure 10. Transient force results on the pipe legs in the x 
direction for Example 2 system using minimum of 200 
sections.  

 
Table 6. Peak forces from Fig. 10 with losses at elbows. 

Leg 
# 

Peak Force on Pipe Leg in x Direction % 
Goodling 

lbf kN 
1 14,635 65.1 96% 
4 16,954 75.4 112% 
7 20,144 89.6 133% 
10 24,913 110.9 164% 
13 32,880 146.3 216% 
16 42,350 188.4 279% 
19 45,706 203.4 301% 

 
EXAMPLE 3 

One final example is offered here. All input conditions are 
the same as Example 1, except the flowrate is at a 20% uprated 
value of 1,397 lbm/s (634 kg/s). Similar to Example 2, this will 
impact conditions at the exit of the pipe and inlet to the TSV with 
extra pressure drop. Again, the purpose here is to show a trend 
and not every detail of the example input and output. 

Fig. 11 shows the transient forces. An item of interest is the 
trend of increasing force with length (e.g., Fig. 4) is different in 
Fig. 11. Here one can see how the peak transient forces in pipe 
Leg 19 are lower than in pipe Leg 16. Walters and Lang [1] 
discuss this possibility. It is caused by two competing effects. 
The first effect is the increased wave steepening the further one 
is from the source of the transient. This is discussed at length in 
the present paper.  

The second effect is reduced potential driving pressure because 
the steady-state pressure drop is lower the farther from the 
transient source. This means a narrower “envelope” of driving 
pressure.  
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Figure 11. Transient force results on the pipe legs in the x 
direction for Example 3 system using minimum of 200 
sections. Note maximum y-axis scale is larger than for 
previous figures. 

DISCUSSION 
The examples presented in this paper clearly show that the 

Goodling Method does not reliably yield conservative pipe 
loads. This confirms earlier reports and especially those in [5]. 
The examples here show that a more detailed model than used in 
[5] produces transient forces much higher than reported in [5]. 
Combined with the theoretical and physics-based explanation in 
[1], there are well-founded reasons to mistrust the Goodling 
Method. 

The examples presented here show that the missing piece 
which the Goodling Method does not account for is wave 
steepening. The wave steepening effect has been shown with 
analytical solutions in [1] and also shown numerically for steam 
flow (in this paper) and for air flow [1]. 

Including the effect of elbow losses reduces peak forces a 
relatively small amount (0-4%) between the Example 1 and 2 
systems. 

Numerical simulation results are sensitive to the number of 
computational sections used (Fig. 5) and to the grid scheme (see 
Appendix). Future analysts applying MOC to steam hammer 
should take great care in these modeling choices. Indeed, Fig. 5 
suggests that the peak forces for the legs farthest from the TSV 
have still not reached a true maximum. Additional safety factors 
should thus be applied to these forces and/or additional 
simulation runs should be made with even more computational 
sections. 

Alarmingly, the findings presented here call into question all 
pipe structural analyses past and present that have relied on the 
Goodling Method – or any similar method which neglects wave 
steepening. As one can find the Goodling Method being used on 
nuclear power station piping [12], the findings here call into 
question the safety of all such piping systems. 

 
RECOMMENDATIONS 
1. Existing systems designed using the Goodling Method 

should be re-evaluated for maximum pipe loads for safety 

reasons. Strengthened pipe supports should be added where 
deemed necessary. 

2. Going forward, engineers should consider using a capable 
simulation tool to determine peak loads and load profiles. 

3. Engineers should not trust the Goodling Method or any 
similar method which neglects wave steepening. A new 
alternative to the Goodling Method which incorporates 
wave steepening effects is given by Walters [13].  
 

CONCLUSIONS 
Traditional methods for evaluating transient piping loads 

(such as the Goodling Method [2-3]) do not reliably give 
conservative pipe loads. Wave steepening is not accounted for in 
such methods. Systems designed using the Goodling Method are 
likely not as safe as previously believed. This includes nuclear 
power station piping in recent decades.  

The Goodling Method should not be used for steam piping 
load estimation except perhaps in very short pipe runs. Engineers 
should seek other methods that can yield more accurate 
estimates. 
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APPENDIX 
There is a grid selection numerical artifact when using the 

MOC for transient compressible flow [9-10]. The details on this 
are frankly beyond the scope of this paper. A brief explanation 
will be given here but interested readers should consult [9-10] 
for a more in-depth explanation. 

Because interpolations are required between grid points, 
stability is ensured by choosing a Δx (pipe section length) and Δt 
(time step) that captures all possible wave position changes. This 
happens at 2*cmax. Here cmax is the maximum acoustic velocity at 
any location and time during the entire simulation. This is almost 
always the acoustic velocity at the maximum gas temperature. 
See Fig. A-1.  

However, if one knows the maximum Mach number during 
the simulation, a different grid can be used which essentially uses 
a longer time step. This offers a double benefit – enhanced 
accuracy and shorter run times (because of the longer time step). 

The Example 1 system has a maximum Mach number of 
about 0.08 which would suggest using 1.08*cmax. Hence, a grid 
like that in Fig. A-2 which uses 1.1*cmax can be safely used.  

The MOC grid is depicted in Figs. A-1 and A-2 where R, L 
and P represent, respectively, the characteristic lines for Right, 
Left and Particle Path. The numbers represent grid point 
locations. 

 
 

 
Figure A-1. Standard grid using Δx = +/- 2cmaxΔt is always 
stable. 

 

 
Figure A-2. Enhanced grid using Δx = +/- 1.1cmaxΔt can be 
used with knowledge of the maximum Mach number. The 
time step here is longer than in Fig. A-1. 

 
 
 




