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ABSTRACT 
Recent research has shown that a commonly used method to 

estimate transient pipe forces does not reliably yield 
conservative predictions. As the topic of transient compressible 
flow is quite complex, engineers should be very cautious in 
applying simple algebraic formulas to estimate loads for design 
use.  With that caution in mind, some engineers would still like 
to have a simple method available. This paper develops a new 
method that offers an improved way of estimating transient pipe 
loads. Comparisons are made against numerical simulations for 
a realistic power station piping example using real gas models 
for the steam properties and pipe friction. The comparisons are 
surprisingly good for this example. The improved method 
provides better estimates than methods commonly used today 
and is recommended as a replacement for such methods. 
Engineers should consider using the new, improved method as a 
preliminary design tool and for screening purposes. Engineers 
should take extra care in using the new method for detailed 
design purposes. 

KEYWORDS 
Steam hammer, piping loads, transient simulation, transient 

compressible flow 

NOMENCLATURE 

Variables and symbols 
a wave speed (ft/s / m/s) 
A cross-sectional area (ft2 / m2) 
c acoustic (sonic) velocity (ft/s / m/s) 
D diameter (ft / m) 
F force (lbf / kN) 
L length (ft / m) 
Lwf length of wave family (ft / m) 

Lshock length where back of wave family catches the front 
and forms a shock wave (ft / m) (Eq. 5) 

P pressure static (psi / kPa) 
t time (sec) 
tc closing time of a valve (sec) 
tshock time when back of wave family catches the front and 

forms a shock wave (sec) (Eq. 4) 
V fluid velocity (ft/s / m/s) 
x axial distance (ft / m) 
γ isentropic expansion coefficient  

Subscripts 
b back (of wave) 
f front (of wave) 
J Joukowsky Equation 
M minus (direction in pipe) 
source source of transient 
SS steady-state 
wf wave family 

INTRODUCTION 
Walters [1] and Walters and Lang [2] showed that the 

Goodling Method [3-4] for estimating steam hammer loads is not 
reliably conservative. Walters [1] recommended that the 
Goodling Method should not be trusted by engineers. What then 
should engineers do? 

A Recommendation in [1] was that “engineers should 
consider using a capable simulation tool to determine peak loads 
and load profiles.” The simulation tool used in [1-2] to elucidate 
the Goodling Method shortcomings is a commercially available 
tool [5]. The advantage of such a tool is that it properly handles 
all important aspect of steam hammer simulation using accurate 
ASME Steam Tables. Further, it includes a complete force 
balance on the piping [6] and can therefore generate more 
accurate peak forces and force-time profiles. As a result, 



2  © 2022 by ASME 
 

engineers will get the best answer possible while reducing 
uncertainty and the resulting need to overdesign.  

A question arises from this line of thought. If one should not 
rely on the Goodling Method, are there any quick analytical short 
cuts that can be used to estimate steam hammer loads that 
provide more trustworthy predictions? This paper attempts to 
provide such a short cut method based on the findings in [1-2].  

By necessity, engineers are pragmatic. In the 
Recommendations section of this paper some pragmatic advice 
will be given on when and when not to use the short cut method 
in this paper. It will be recommended to use the short cut method 
in this paper as a preliminary design tool and for screening 
purposes. Use of a “capable simulation tool” [1] is recommended 
to finalize design loads. 

This paper relies heavily on the findings in [1-2]. One who 
wishes to understand the details behind this paper should consult 
those references. Here the relevant findings from [1-2] that 
explain this new method will be collected, reiterated and applied. 

 
SUMMARY OF STEAM FLOW WAVE BEHAVIOR 

Here a brief summary is given of some of the main points 
detailed in [1-2].  

When a valve closes in a steam line (or any gas line) where 
there is positive forward flow, a compression wave is generated 
upstream of the valve. The wave travels in the opposite direction 
of the bulk fluid flow. When the valve closes over some finite 
time (as all real valves do), a family of compression waves is 
generated. For a perfect gas in frictionless, adiabatic flow, 
closed-form analytical relationships can be developed to predict 
movement and behavior of this family of waves over time and 
space [2]. For real systems which include real gas behavior and 
friction, a capable simulation tool is needed to accurately predict 
this [1]. 

Fig. 1 shows an example system from [1]. Here the steam 
flow is from left to right. The TSV (Turbine Stop Valve) at the 
right closes over some time, tc. This generates a family of waves 
which moves to the left, backward into the oncoming flow of 
steam. 

Fig. 1 is a single horizontal pipe run with the following 
dimensions: 

• Length = 1,980 ft (604 m) 
• Inner diameter = 29.25 inches (0.743 m) 
• Adiabatic wall 
• Seven pipe legs of 40 ft. (12.2 m) length which are 

bounded by elbows pairs (Fig. 1) 
o Legs 1, 4, 7, 10, 13, 16, and 19  

• All other legs are 125 ft (38.1 m) except for Leg 20 
which is 200 ft (61 m) 

 
The speed of a compression wave, a, is given by the 

difference in the steam fluid velocity, V, and acoustic velocity, c. 
 
 𝑎𝑎 = 𝑉𝑉 − 𝑐𝑐 (1) 

 

 
Figure 1. Schematic of example system with actual 
dimensions shown in the preceding bullet list for each pipe 
leg. Pipe legs with * symbol are those seven for which forces 
are calculated. Not to scale. From [1]. 

 
When there is a family of waves, there is a different wave 

speed at the front of the wave family than at the back. Further, 
the back of the wave family travels faster than the front. This is 
what causes the wave family to steepen as discussed in detail in 
[1-2]. 

For a perfect gas in adiabatic, frictionless flow the speed at 
which the back catches the front is given by (Eq. 2 in [1]): 

 
 ∆𝑎𝑎𝑓𝑓𝑓𝑓 = �𝑉𝑉𝑆𝑆𝑆𝑆 �

𝛾𝛾+1
2
�� (2) 

 
Eq. 2 can also rendered in the form of Eq. 3 (Eq. 3 in [1]), 

which also applies to adiabatic flow of real gases with friction. 
Eq. 3 represents the initial speed of wave steepening. 

 
 ∆𝑎𝑎𝑓𝑓𝑓𝑓 = |𝑐𝑐𝑏𝑏 − 𝑐𝑐𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑆𝑆𝑆𝑆| (3) 
 

For a perfect gas in adiabatic, frictionless flow Fig. 2 can be 
constructed based on analytical relationships (see Fig. 6 in [2], 
which also has a numerical example). Some key observations 
can be made from Fig. 2. One can see the back of the wave family 
catching up with the front. Eventually it does catch the front. 
This will result in the wave family coalescing into a single wave 
(a discontinuity or shock wave). The time, t, and location, x, 
where this first happens is noted on Fig. 2 as tshock and xshock. 

Walters and Lang [2] derived analytical relationships for 
these two parameters (Eqs. 16-17 in [2]): 

 

 𝑡𝑡𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = �1 + � 2
𝛾𝛾+1

� �𝑐𝑐𝑆𝑆𝑆𝑆
𝑉𝑉𝑆𝑆𝑆𝑆

− 1�� 𝑡𝑡𝑐𝑐 (4) 

 𝐿𝐿𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑐𝑐𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑆𝑆𝑆𝑆)�1 + � 2
𝛾𝛾+1

� �𝑐𝑐𝑆𝑆𝑆𝑆
𝑉𝑉𝑆𝑆𝑆𝑆

− 1�� 𝑡𝑡𝑐𝑐 (5) 

 
where, in Fig. 2, xshock = L – Lshock. 
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Figure 2. Paths of front and back of wave family (from right 
to left) in a compression wave family for perfect gas, 
adiabatic, frictionless flow [2]. 
 
PREDICTING TRANSIENT FORCES 

The traditional method of calculating transient pipe forces is 
based on using only pressure forces and neglecting other terms 
in Newton’s Second Law. Walters [1] discusses this and makes 
reference to the detailed discussion of a complete force balance 
detailed in Lang and Walters [6].  

Hence, any transient force balance that only uses pressure 
forces is approximate. Lang and Walters [6] discuss the potential 
pitfalls of only using pressure forces. 

With that preamble, the short cut method offered in this 
paper uses only pressure forces. The pressure forces themselves 
are approximate as the method does not account for all forces in 
the force balance. This is yet another reason to give strong 
consideration to using a capable simulation tool that accounts for 
a complete force balance [6]. 

 
WHAT IS RETAINED FROM THE GOODLING METHOD 
Problems inherent in the Goodling Method 

The Goodling Method is reviewed in [1]. There are three 
main problems with the Goodling Method: 

 
1. It neglects wave steepening. In practical terms, it assumes 

that there is a constant “characteristic length” when in fact 
there isn’t. See Fig. 3 (taken from Fig. 8 in [1]). 

2. The characteristic length is itself miscalculated. It should 
be based on wave speed of the steam and not acoustic 
speed – see [1]. And since it changes, it is only valid at the 
initial stage of the transient.  

3. It assumes that pressure forces are the only important 
forces when calculating transient pipe forces. 

 
The calculation in [1] comparing pressure forces to a 

complete force balance showed that it was conservative to only 
use pressure forces – at least for the Example 1 in [1]. As long as 
engineers are looking at only straight runs of pipe with relatively 
small pressure drops, and no static pipe fittings or valves and 
especially no transient components (such as a valve which 
changes position), the use of pressure forces only should still be 

conservative. But remember that this is only an assumption at 
this point – based on observation of simulation results with no 
theoretical backing based on physics. 

 
Figure 3. The length of the wave family (usually called the 
characteristic length) for Example 1, 200-sections case in [1]. 
This example uses real gas ASME Steam Tables data and 
pipe friction. 

 
Steps to apply the Goodling Method [4] 

1. Calculate a maximum possible transient force (this is Eq. 
4 in [1]). 

2. Calculate a characteristic length (Eq. 5 in [1]). 
3. Use the actual length of pipe run leg to determine a 

maximum force for that pipe leg (Eq. 6 in [1]). 
4. Create a force vs. time profile using the preceding three 

elements (Fig. 1 in [1] shows a typical example – see 
Goodling [4] for more on creating profiles using that 
method).  

 
The method proposed here is intended to account for wave 

steepening and to predict conservative forces. Here is what is 
retained from Goodling: 

 
• The general idea of characteristic length will be kept. 

However, it will be renamed and treated as a variable. 
• Use of only pressure forces to determine forces. 
• Use of the Joukowsky Equation to determine a 

maximum force. 
• Construction of a force-time profile based on length of 

pipe run and wave speed. 
 
DEVELOPMENT OF IMPROVED METHOD 

The intent going forward is to construct the complete 
method of load estimation without need to make reference to 
other publications. 

 
How fast does a wave steepen? 

Another way to ask this question is, “How long does it take 
the back of the wave to catch the front?” Fig. 4 helps us 
understand this question for an example using real gas properties 
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(ASME Steam Tables) and pipe friction (taken from Fig. 6 in 
[1]).  

In Fig. 4 one can see the trailing edge of the wave catching 
up with the front edge similar to the idealized case in Fig. 2. 
Eventually the back will catch the front and coalesce into a single 
moving shock wave. 

 
Figure 4. Positive and negative characteristic lines follow the 
front and back of the wave family for 200-sections Example 
1 case in [1]. This example uses real gas ASME Steam Tables 
data and pipe friction. 
 
What is the length of the wave family? 

While the back of the wave family (in Fig. 4) has not caught 
up with the front, by inspection one can see that it nearly has. 
Fig. 3 shows the length of the wave family by subtracting the two 
wave positions in Fig. 4. In other words, Fig. 3 shows the length 
of the wave family over time. While the wave family length in 
Fig. 3 does not completely go to zero, it will when the back 
catches the front assuming the pipe is long enough.  

While it has been made clear that Figs. 3 and 4 use real gas 
behavior and pipe friction, for the sake of interest let’s assume 
we can use Eqs. 4-5 to predict the location and time where the 
back catches the front and forms a shock wave. Eqs. 4-5 are, 

strictly speaking, developed for a perfect gas with adiabatic, 
frictionless flow. 

The input data to use for Eqs. 4-5 comes from Table 1 in 
Walters [1] and the associated discussion of the example. Tables 
1 and 2 below collect data shown in [1]. 

 
Table 1. TSV steady-state conditions at valve inlet (exit of 

pipe at Leg 1 in Fig. 1) 

Parameter Value at TSV 
D (inner) 29.25 in. (0.743 m) 

A 672 in2 (0.433 m2) 
L 1980 ft (604 m) 
V 115.6 ft/s (35.3 m/s) 
c 1614 ft/s (492 m/s) 

aM = V – c − 1498 ft/s (− 457 m/s) 
γ 1.25 

 
Table 2. Some results using Table 1 input. 

Parameter Eq. Calculated Result  
tshock 4 1.252 seconds 
Lshock 5 1876 ft (572 m) 

xshock = L - Lshock N/A 104 ft (32 m) 
 

Looking at Fig. 4, one can see that at x = 104 ft / 32 m (the 
xshock value from Table 2) the front and back of the wave family 
are very close to each other. But they have not coalesced (which 
is the meaning of xshock). In other words, Eq. 5 underpredicts the 
actual Lshock value for the Fig. 4 example. This is important as it 
will generally result in a conservative maximum force prediction 
in the improved method. 

The Goodling Method [4] uses a “characteristic length”. As 
noted earlier, Walters [1] argues that this is not a reliable 
parameter and, even if it was, the Goodling Method does not 
calculate it correctly. As a result, a new parameter will be created 
here called the “wave family length”, Lwf. This parameter is 
precisely what is shown in Fig. 3. Since the wave movement is a 
function of time and space, Lwf can be represented as a function 
of either. We will therefore create two variants of Lwf as follows: 

 
 𝐿𝐿𝑤𝑤𝑤𝑤−𝑡𝑡 = 𝑓𝑓(𝑡𝑡) (6a) 

 𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥 = 𝑓𝑓(𝑥𝑥) (6b) 
 
Fig. 3 directly represents Eq. 6a. Fig. 4 indirectly represents 

Eq. 6b. 
The initial value of the wave family length is determined 

based on Eq. 6a. It is given by the following and is analogous to 
(but not the same as) Goodling’s characteristic length: 

 
 𝐿𝐿𝑤𝑤𝑤𝑤−0 = �𝑎𝑎𝑀𝑀,𝑆𝑆𝑆𝑆�𝑡𝑡𝑐𝑐 (7) 
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where aM,SS is the initial wave speed at the front of the wave 
family and determined from steady-state conditions, VSS – cSS 
(Eq. 1). It represents Region 1 in Fig. 2. See Table 1 or equivalent 
for values to use in Eq. 7. For real gases with friction aM is a 
function of time. 

Fig. 3 has the advantage of being developed from a detailed 
numerical simulation [1] and is thus not suitable as a short cut 
method. But the short cut method needs to accept and honor the 
behavior shown in Fig. 3. In that spirit the following 
approximation is proposed to define Eq. 6: 

 
For Δxsource > Lwf-0, 
 𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥 = 𝐿𝐿𝑤𝑤𝑤𝑤−0�1− �∆𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐿𝐿𝑤𝑤𝑤𝑤−0� 𝐿𝐿𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜⁄ �  
  (8a) 

For Δxsource <= Lwf-0, 
  𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥 = 𝐿𝐿𝑤𝑤𝑤𝑤−0 (8b) 
 
For t > tc, 
 𝐿𝐿𝑤𝑤𝑤𝑤−𝑡𝑡 = 𝐿𝐿𝑤𝑤𝑤𝑤−0(1− (𝑡𝑡 − 𝑡𝑡𝑐𝑐) 𝑡𝑡𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜⁄ ) (9a) 

For t <= tc, 
 𝐿𝐿𝑤𝑤𝑤𝑤−𝑡𝑡 = 𝐿𝐿𝑤𝑤𝑤𝑤−0 (9b) 
 
where Δxsource in Eq. 8a-b is the distance from the source of the 
transient to the location of interest. In the case of Fig. 4, it would 
be determined as Δxsource = L – x since the source of the transient 
is at x = 1,980 ft (604 m). Eqs. 8-9 are both equivalent ways of 
determining Lwf. 

For the example at hand, Eq. 9a-b can be cross-plotted on 
Fig. 3 as shown in Fig. 5 below. Here you can see that Eq. 9a-b 
is an acceptable approximation to the Fig. 3 numerical 
simulation. With Eqs. 8-9 available, we are now ready to 
describe the improved short cut method. 

  
Figure 5. Length of wave family from numerical simulation 
[1] and from Eq. 9 approximation. 

 
ASSUMPTIONS MADE IN IMPROVED METHOD  

1. The wave speed at the front of the wave family remains 
constant and at the initial value, aM,SS. 

2. The maximum force can be determined using pressure 
forces only. 

3. The maximum pressure force is obtained using the 
Joukowsky equation with acoustic velocity. 

4. The maximum pressure force does not attenuate over 
time and distance. 

5. The length of the wave family can be determined using 
Eqs. 8 or 9. 

6. Constant diameter pipe with no wave reflections. 
7. No fittings or diameter changes of any kind exist in the 

pipe run legs where forces are being calculated. 
8. Only one single transient exists and there are no other 

transients happening during the same time in the piping 
that could interact with the single transient. 

9. Pipe is rigidly restrained and does not move and there 
is no local wall deformation near shock fronts. 

10. Condensation does not happen at any location or time 
in the pipe. 

 
IMPROVED METHOD OF ESTIMATING TRANSIENT 
LOADS 

 
Step 1 

Approximate the maximum possible transient force, FMax, 
using the Joukowsky Equation and the pipe cross-sectional area, 
A. This uses steady-state values at the TSV. This is the same step 
as used by the Goodling Method [4] except here we do not use a 
1.05 multiplier for compressibility. Those accustomed to using 
Goodling are welcome to use the multiplier but the author does 
not believe it is necessary because this method better accounts 
for compressibility than Goodling: 

 
 ∆𝑃𝑃𝐽𝐽 = −𝜌𝜌𝜌𝜌∆𝑉𝑉 (10) 

 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 = ∆𝑃𝑃𝐽𝐽A (11) 
 

Step 2 
Approximate the initial length of the wave family using Eqs. 

1 and 7 based on steady-state values at the TSV: 
 

 𝑎𝑎𝑀𝑀,𝑆𝑆𝑆𝑆 = |𝑉𝑉𝑆𝑆𝑆𝑆 − 𝑐𝑐𝑆𝑆𝑆𝑆| (1) 
 

 𝐿𝐿𝑤𝑤𝑤𝑤−𝑜𝑜 = �𝑎𝑎𝑀𝑀,𝑆𝑆𝑆𝑆�𝑡𝑡𝑐𝑐 (7) 
 

Step 3 
Calculate the approximate length of the wave family when 

it reaches the pipe run leg of interest, xLeg. Use Eq. 8a-b for this 
and, when using an x-coordinate system like that in Fig. 1, xLeg is 
the same thing as Δxsource. As the pipe run leg has a length of its 
own, LLeg, it is recommended to use the midpoint of the pipe run 
leg to determine the xLeg location. An example of this will be 
shown in the next Section. 
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For xLeg > Lwf-o, 
 𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥 = 𝐿𝐿𝑤𝑤𝑤𝑤−0�1− �𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝑤𝑤𝑤𝑤−0� 𝐿𝐿𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜⁄ � 
  (8a) 
For xLeg <= Lwf-o, 
 𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥 = 𝐿𝐿𝑤𝑤𝑤𝑤−0 (8b) 
Step 4 

Approximate a maximum force for the pipe run leg of 
interest using Eqs. 8a-b and 11: 

 
For Lwf-x <= LLeg, 

 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 (12a) 
 

For Lwf-x > LLeg, 
 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥

 (12b) 
Step 5 

Some analysts are interested in getting a transient forcing 
function on the pipe leg [4]. An improved forcing function can 
be obtained using Fig. 6 and Eqs. 13-14 below as approximate 
values. Recalling that xLeg here is the pipe leg midpoint, the time 
when the wave first arrives at the start of the pipe run leg, tf, is 
approximated by: 

 
 𝑡𝑡𝑓𝑓 = �𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 −  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

2
� 𝑎𝑎𝑀𝑀,𝑆𝑆𝑆𝑆�  (13) 

 
The total time it takes for the wave to first enter then 

completely leave the pipe run leg is approximated by: 

 ∆𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿 = �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝑤𝑤𝑤𝑤−𝑥𝑥� 𝑎𝑎𝑀𝑀,𝑆𝑆𝑆𝑆�  (14) 
 
For those unfamiliar with the Goodling Method, Fig. 6 gives 

an approximate way to construct a forcing function. The shape 
of the forcing function depends on whether the wave family fits 
completely inside the pipe leg or not. If it does fit, the pipe leg 
will see a maximum pressure difference across the wave family. 
Hence, the force will be higher (Eq. 12a). If the wave family does 
not fit, then the pipe leg only experiences a portion of the 
pressure difference across the wave family. The corresponding 
force will thus be lower (Eq. 12b). 
 
NUMERICAL EXAMPLE OF IMPROVED METHOD 

The Improved Method will be applied to Example 1 from 
[1] using a minimum of 200 pipe sections. Load estimations from 
all seven pipe run legs will be given. Values in Tables 1-2 are 
used in this Example. Fig. 1 and accompanying text gives the 
lengths of pipe run legs. Table 3 shows results for Steps 1 and 2. 

Table 4 shows the xLeg locations (assumed to be midpoints), 
the Lwf-x values, and peak predicted forces of Step 4. Fig. 7 shows 
the approximate force vs. time profiles from Step 5.  

Table 5 compares peak predictions from the Improved 
Method and numerical simulation from [1]. Peak pressures for 
the first five pipe legs are surprisingly good while Legs 16 and 
19 overpredict the forces in [1] by about 20%. 

Fig. 8 cross-plots the Step 5 approximate profiles against the 
simulation results from [1]. These results show that the Improved 

Method does an amazingly good job on this example for Legs 1, 
4, 7, 10 and 13. For Legs 16 and 19 it is conservatively higher.  

 
Figure 6. Force-time profile for wave moving past a pipe run 
length for (a) LLeg < Lwf-x, (b) LLeg = Lwf-x, (c) LLeg > Lwf-x. The 
approximate time at which the wave arrives at the pipe run 
is given by tf = (xLeg - 0.5LLeg) / aM 

Table 3. Improved Method Steps 1-2 intermediate results 

Parameter Eq. Calculated Result  
ΔPJ 10 86.9 psid (599 kPa) 
Lwf-0 7 149.8 ft (45.7 m) 
Fmax 4 61,288 lbf (272.6 kN) 
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Table 4. Improved Method Steps 3-4 results 

Leg 
# 

xLeg Lwf-x Peak Force 
Fig. 1 Eq. 8 Eq. 12 
ft / m ft / m lbf kN 

1 20 / 6 150 / 45.7 15,582 69.3 
4 310 / 95 137 / 41.8 17,036 75.8 
7 600 / 183 114 / 34.7 20,500 91.2 
10 890 / 271 91 / 27.7 25,733 114.5 
13 1180 / 360 68 / 20.6 34,553 153.7 
16 1470 / 448 44 / 13.5 52,573 233.8 
19 1760 / 537 21 / 6.5 58,369 259.6 

 
Figure 7. Force vs. time profiles for Example showing 
approximate Improved Method transient curves. 
 
A CRITIQUE OF IMPROVED METHOD 

Transient compressible flow is a complicated subject. 
Indeed, until recently there were virtually no quality commercial 
tools capable of simulating this while also being pragmatic for 
engineering design use. Expecting that simple, algebraic 
relationships for the Improved Method are adequate for high 
pressure steam systems in expensive power stations carries risk, 
especially when there are commercial tools available. 

For example, while the Improved Method is not necessarily 
excessively conservative in the Example shown in the paper, it 
may be excessively conservative in Example 3 in Walters [1]. 
That example has increased flow by 20% for a hypothetical 
power uprate. That example shows there is no guarantee that 
forces will always increase as one moves farther from the source 
of the transient. 

In addition, various TSV closure profiles may exist which 
have a longer closing time and/or are non-linear. It is not known 
how the Improved Method will work on such systems. 

Whereas it has been shown in this paper that the Improved 
Method does a surprisingly good job of predicting transient 
forces in the Example problem, it does make a number of 
assumptions which are listed in an earlier section of this paper. 
 

Table 5. Results Comparison for Example using Improved 
Method and Numerical Simulation from [1, Table 4] 

Leg 

# 

Peak Force on Pipe Leg in x Direction 

Improved Method Simulation [1] 
lbf kN lbf kN 

1 15,582 69.3 14,610 65.0 
4 17,036 75.8 16,985 75.6 
7 20,500 91.2 20,361 90.6 
10 25,733 114.5 25,469 113.3 
13 34,553 153.7 33,823 150.5 
16 52,573 233.8 44,019 195.9 
19 58,369 259.6 47,699 212.2 

 
Figure 8. Force vs. time for Example showing cross-plot of 
Improved Method and simulation results from [1]. 
 

One assumption is that the initial steam wave speed remains 
constant (Assumption #1). Fig. 7 in Walters [1] shows that it does 
change with time (albeit by only about 1% in the provided 
example). 

A second general assumption (Assumptions #2 and #3) is 
that one can use only pressure forces to obtain peak forces. Using 
only pressure forces and ignoring other parameters in Newton’s 
Second Law will not always be conservative. Lang and Walters 
[6] show that a complete force balance is more accurate and 
reliable than use of only pressure forces. 

A third assumption relates to fittings (Assumption #7). If 
there are any fittings in the pipe run leg, diameter changes, wave 
reflection points, and even transient events from something like 
a closing valve in a pipe run, the Improved Method will likely 
not be accurate and maybe not even conservative. 

 
RECOMMENDATIONS 
1. Existing systems designed using the Goodling Method 

should be re-evaluated for maximum pipe loads for safety 
reasons. Strengthened pipe supports should be added where 
deemed necessary. 
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2. Engineers should consider using a capable simulation tool 
to determine peak loads and load profiles. This will yield the 
most accurate predictions, handle wave reflections should 
they occur, identify undesirable transient condensation and 
will not add unnecessary conservatism. 

3. The Improved Method in this paper offers more reliable 
force estimates than Goodling. The Improved Method is 
recommended as a screening tool and at the preliminary 
design stage. For example, it can be applied to existing 
designs in power stations to show which systems should be 
evaluated for strengthened supports.  
 

CONCLUSIONS 
An Improved Method of estimating steam hammer loads is 

detailed. To be used, it requires only a quality steady-state 
solution. Comparisons against simulation results show 
surprisingly good agreement. The Improved Method offers 
significant advantages over the Goodling Method and should be 
considered by the engineering community as a replacement for 
Goodling. 

The method makes many assumptions and may be best used 
as a screening tool or for preliminary design purposes. Many 
existing pipe systems in operating power stations have been 
designed using the Goodling Method which has been shown to 
be potentially unconservative. This Improved Method can help 
evaluate which of these pipe systems should be re-evaluated for 
safety reasons. 
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