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ABSTRACT 
 

A case history is presented pertaining to five pumping 
systems that operated satisfactorily until a new production 
requirement was imposed on the pumping systems. A new 
slurry product initially developed at lab scale was introduced 
into the production plant for an initial trial run. Problems began 
to surface immediately on three out of five batch process 

pumping systems when the slurry could not be pumped through 
the plant at contract rate. Additionally, significant "heels" 
(unwanted fluid levels) were left in some of the suction vessels 
that were unable to be pumped out, resulting in considerable 
yield losses. This manufacturing problem had not been 
anticipated by the team, and without quick resolution, a loss of 
customer confidence and a significant delay in the new product 
would have resulted. 

Investigation and analysis of the system revealed two 
major problem areas in pumping non-settling slurries in laminar 
regimes: 

• Initial prediction of head losses through suction piping 
fittings was flawed using traditional hydraulic loss 
methods. The original calculations for NPSHA values 
for the pumps predicted adequate NPSH margin. The 
fluid was non-Newtonian and was operating in the 
laminar regime. Upon further investigation, a 
weakness was revealed in predictions of fitting losses 
for laminar flow through the pipe fittings. An 
improved model for predicting losses through pipe 
fittings was identified and implemented. The improved 
model matched operational data much better and 
provided the critical insight needed to resolve the 
operational problems and get the facility operating. 

• Piping arrangements that allow for features such as 
clean-out ports (e.g., branch flow tees) can be 
counterproductive to unrestricted flow of the process 
liquid in systems with non-settling slurries operating 
in laminar regimes. Tees, elbows, diameter changes, 
and other fittings can introduce significant head losses 
in the pumping system. 

The authors present an improved method for analyzing 
fitting losses in pumping systems when dealing with non-
settling slurries operating in the laminar regime. In addition, 
design considerations are presented to minimize the impact that 
piping has on the pumping system when handling non-settling 
slurries operating in the laminar regime. 

 
 
INTRODUCTION 
 
Description of Pumping Systems 

Five batch pumping systems were in place in an existing 
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process plant. In each pumping system, the process liquid is fed 
into the pump from a large suction vessel which contains a 
mixer to keep the liquid in a sheared state. The pressure in the 
vapor space of the suction vessel is atmospheric. The piping 
from the suction vessel to the pumps is not a straight path in the 
systems, with some being more complicated than others. The 
liquid exits the pumps and goes through discharge piping. 
There is a minimum flow recirculation line in the discharge of 
each pump that is regulated by a pinch valve. Pumping systems 
#1, #3, #4, and #5 are transfer systems moving fluid from one 
tank to another and a representation is shown in Figure 1. 
Pumping system #2 moves the fluid to a machine which 
interacts with the fluid and this machine requires a minimum 
inlet pressure and a representation is shown in Figure 2. 
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Figure 1. Representation of Pumping Systems #1, #3, #4, and 
#5 
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Figure 2. Representation of Pumping System #2 
 

Newtonian fluids cover conventional fluids such as water, 
where the fluid shear stress is directly proportional to shear 
rate. The proportionality constant is the viscosity of the fluid. 
This relationship is observed in the solid line of Figure 3 at the 
left. Here it is apparent that the shear stress varies directly with 
shear rate. The solid line is for a Newtonian fluid.  

The viscosity of a Newtonian fluid is not a function of the 
fluid dynamics (e.g., velocity, which is directly proportional to 
shear rate) or a function of time. This can be observed on the 
right of Figure 3, where the viscosity has no dependence on 
shear rate (for the solid line, which is Newtonian). 

 
 

 
Figure 3. Steady shear rheological behavior, shown with shear 
stress and viscosity as a function of shear rate. Dotted line is 
shear thinning fluid; solid line is Newtonian fluid. 

 
A fluid which exhibits a viscosity dependence on the fluid 

dynamics (e.g., velocity/shear rate) or time is referred to as 
non-Newtonian. A fluid in which the shear stress and shear rate 
follow a straight-line on a log-log plot is referred to as a power 
law fluid. 

In practice, this means the viscosity varies for different 
velocities. In the case of a power law fluid, as the velocity 
increases, the viscosity decreases. This is also known as “shear 
thinning” behavior. 

In this case, the pumped media is a non-settling slurry. The 
slurry has the characteristic of being shear thinning and acting 
like a power law fluid. The fluid in this case is not drilling mud, 
but it looks and behaves somewhat like many drilling muds. 

The process followed to calculate the pressure drop for a 
power law fluid (and most other non-Newtonian fluids) is to 
first perform a rheological test on the fluid. A viscometer is 
used to measure the shear stress at different shear rates. Often 
the test is done with increasing shear rate and then decreasing 
shear rate to check for hysteresis. A true power law fluid will 
not exhibit any significant hysteresis. This data is then used to 
determine the power law constants. 

The viscometer test was done on the fluid in this case 
study. The process of determining power law constants was 
pursued and the raw rheological data followed a power law 
model quite well. This confirmed the fluid was non-Newtonian 
in its behavior and that the slurry was non-settling. If the slurry 
was of a settling nature the power law model would not have fit 
the data. Later in this paper the mathematical details of how 
these constants are used to calculate pressure drop will be 
discussed. 

Once the power law data was applied to the systems in 
question, it was apparent that the Reynolds number was in the 
laminar regime. 

 
Description of Pump 

The pumps used in the production facility were ASME 
B73.1 pumps using open impellers and dual mechanical seals. 
The metallurgy of each pump was adequate to handle the 
abrasiveness of the slurry. 
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Figure 4. Cross section of pump for each system (Courtesy 
Flowserve Corporation) 

 
 

 
Figure 5. Representative Pump Curve at 1750 rpm (all pumps 
nearly identical except for changes in impeller diameter) 

 
Description of Problem 

Prior to the trial of the new process liquid, all five batch 
systems had moved liquid in a manner satisfactory to 
production needs. However, after the new product was 
introduced, three of the five pumping systems developed 
multiple problems: 

• Significant heels of liquid from 3 to 5 ft (0.9 to 1.5 m) 
were left in the suction vessels when the pump would 
cease pumping. 

• Flow rates were not adequate to meet production 
demands. 

• Inadequate pressure was being delivered downstream 
to users requiring a certain minimum pressure. 

 
Heel Left in Vessels 

In three of five of the pumping systems, a significant heel 
was left in the vessel. For the three problem vessels, the pumps 
initially moved the slurry out of the vessels consistently, and 
the vessel levels came down steadily. However, when the 
vessel levels reached 3 to 5 ft (0.9 to 1.5 m), depending on the 
vessel, the level stopped dropping as the pump flow rapidly 
dropped to zero. It was not clear at this point if there was a 
suction issue, a pump issue, or a discharge issue. 

Two of the five pumping systems did not exhibit problems, 
even though they were handling the same process liquid. 
Pumping system #3 did not have an issue. This vessel was 
continuously fed and the level never dropped below 5 ft (1.9 m) 
above the centerline of the pump. Pumping system #5 did not 
leave a heel in the vessel. 
 
Inadequate Flow and Pressure Delivered 

For the five systems, three had issues with meeting flows 
or downstream pressure requirements. Of the three problematic 
systems, two had flows that were not adequate to keep up with 
production demands. These two systems were simple transfer 
systems, so the only thing noticed was a flow inadequacy issue. 
The one remaining problematic system required the pump to 
feed a machine downstream, and inadequate pressure was being 
delivered to the machine for it to function properly. 
 
 
INVESTIGATION 
 
System Hydraulic Model 

A commercially available software package (Applied Flow 
Technology, 2008) was used to model the systems to better 
understand the hydraulics. All five pumping systems were 
modeled to see if there were differences that might explain why 
two systems were working, while the other three were not. The 
modeling software was able to put in characteristics for a power 
law fluid. Thus, changes in shear could be accounted for 
properly. 

The initial analysis for each pumping system showed that 
the pumps had enough NPSH margin to pump the tanks 
virtually down to a zero level. Table 1 shows the original model 
calculations and breaks down the ΔP for the pipe and fittings, 
as well as the predicted NPSHA, NPSHR and NPSH margin 
values. Of course, a minimal heel would still be left in any 
vessel due to the vortexing and eventual loss of prime that 
occurs when the vessel level gets too low. Based on the fact 
that the NPSH showed no problems in the analysis, the focus 
was turned towards the pump and the discharge piping. 
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Table 1. Original Hydraulic Model Predictions Using Non-
Newtonian Pipe Friction and Standard K Factors for Valves and 
Fittings 

# 

Flow  

gpm 

(m3/hr) 

ΔP 
Suction 

Pipe 

psid 

 (kPa) 

ΔP 
Suction 

Pipe 
Fittings 

psid 

 (kPa) 

NPSHA   

ft 

(m) 

NPSHR  

ft 

(m) 

NPSH 
Margin 

ft 

(m) 

1 170 

(38.6) 

0.7 

(4.8) 

0.5 

(3.4) 

11.6 

(3.5) 

4.1 

(1.2) 

7.5 

(2.3) 

2 69 

(15.7) 

0.2 

(1.4) 

0.1 

(0.7) 

12.8 

(3.9) 

2.3 

(0.7) 

10.5 

(3.2) 

3 114 

(25.9) 

0.2 

(1.4) 

0.2 

(1.4) 

17.4 

(5.3) 

3.0 

(0.9) 

14.4 

(4.4) 

4 95 
(21.6) 

1.4 

(9.7) 

0.2 

(1.4) 

11.2 

(3.4) 

2.7 

(0.8) 

8.5 

(2.6) 

5 95 
(21.6) 

0.1 

(0.7) 

0.1 

(0.7) 

13.1 

(4.0) 

2.7 

(0.8) 

10.4 

(3.2) 

 
Based on the shear rate of the fluid in the suction, it was 

anticipated that a bulk viscosity of ~200 cp was entering the 
pump suction. In addition, the pumps were operating at around 
60% of B.E.P. (Best Efficiency Point). The pumps were 
configured ideally for pumping a viscous liquid: 

• Operating at 1750 rpm –with a viscous fluid, it is best to 
operate at a low speed to allow the fluid to more easily 
flow into the pump and keep up with feeding the pump. 

• Operating to the left of B.E.P. – centrifugal pump 
performance (e.g., flow, head, power) is less impacted with 
a pump operating to the left of B.E.P. when pumping a 
viscous liquid. There is less deviation on the flow and head 
produced by the pump in the viscous fluid as compared to 
its water performance. 

• Viscosity value of 200 cp – a value of 200 cp is within the 
range where a centrifugal pump does not lose significant 
performance. There was a mixer in the suction vessel to 
provide initial shear to the liquid as well so it flowed more 
easily to the pump. 

Flow data, pressure data at the pump discharge, and power 
data were obtained from the field. Unfortunately, there was no 
pressure gauge on the pump suction. At the time the pumps 
were pumping well, the values for flow, pressure differential 
across the pump, and power matched the predicted performance 
curve well. Thus, it was felt there was no problem with the 
pump performance. However, when the pumps entered the 
regime where they stopped pumping, flow went to zero, 
discharge pressure dropped off considerably, and power 
dropped off considerably. 

The discharge piping was rather long on each of the 
systems. Two of the systems had an excessive number of 
fittings in the discharge, including many sharp branch flow 
tees, 45 degree bends, 90 degree bends, abrupt diameter 

changes, and pinch style valves. The initial system model again 
predicted there should be no problem delivering the required 
flows and pressures needed. 

The troubleshooting focus then shifted to any other points 
in the system where flow might be unexpectedly bypassing 
back to the suction vessel. Each of the pumps had a minimum 
recirculation flow bypass line with a manual pinch valve in the 
line to regulate the flow. It was found that these valves were 
grossly oversized. However, they were nearly shut to 
compensate for this. Ultrasonic flow measurements were taken 
and it was found that these recirculation lines were not passing 
more flow than expected. 

So everything seemed to check out that the system should 
perform as expected when running the hydraulic model. Three 
pieces of data that did not agree with the model were the heel 
that was left in the vessel, the flow rates, and the pressure well 
downstream of the pump at the user. 

More abstract theories began to surface as the 
troubleshooting team grew more desperate. Some wondered if 
the fluid was not being sheared enough in the piping and was 
reverting back to its non-sheared state, which had a viscosity 
value in the thousands. 

One theory hypothesized that the pipe and fittings losses 
were not modeled correctly for handling a non-settling slurry 
operating in the laminar regime. This theory had a lot of 
support, since there were still many signs that an inadequate 
NPSH margin was the issue. First, the pumps were moving 
fluid satisfactorily and then, within a small reduction in suction 
tank level, the flow would drop to zero. This sudden 
performance drop-off fit well with that of a typical “knee 
curve” for NPSH. Figure 6 shows a typical “knee curve,” where 
there is a dramatic change in pump head once the pump 
typically gets past the 3% head drop due to a lack of NPSH 
margin. Second, on the three pumping systems that had an 
issue, there were numerous branch tees, valves, and elbows in 
the suction piping. The two pumping systems that did not have 
an issue had fewer pipe fittings in the suction piping. Thus, the 
team began to investigate how the hydraulic losses should be 
handled for pipe fittings. 
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Figure 6. NPSH Breakdown Curve 

 
 
 

CALCULATION OF PRESSURE DROP THROUGH 
VALVES AND FITTINGS 
 

The calculation of pressure drop in pipe systems has 
numerous aspects. Two of these are the calculation of frictional 
pressure drop in pipes, and the calculation of pressure losses in 
valves and fittings. Included in this list of valves and fittings 
are: 

• Regular valves 
• Check valves 
• Three-way valves 
• Orifices 
• Elbows 
• Tees 
• Area changes 
• Screens and filters 
• Flow meters 

There are two popular methods of calculating pressure 
drop for valves and fittings: the K factor method and the 
Equivalent Length method. 

The discussion in this paper is limited to incompressible 
(constant density) applications. Typically, liquid pipe flow 
behaves in an incompressible manner. 

Often valves and fittings are referred to as “minor losses.” 
This term is synonymous with “valves and fittings.” But it is 
unfortunate because in some cases the “minor losses” are not 
minor at all and are in fact major. This paper is an example of 
such a case. 

 
Frictional Pressure Drop in Pipes 

It is helpful to begin the discussion of pressure drop in 
valves and fittings by first discussing Newtonian frictional 
pressure drop in pipes. There are many methods used to 
calculate pipe pressure drop. The most popular method is based 
on the Darcy-Weisbach friction factor commonly obtained 

through Moody diagrams. The relationship is given by: 
 







=∆ 2

2
1 V

D
LfPpipe ρ  (1) 

 
 
K Factor Method for Pressure Drop in Valves and Fittings 

The K factor method of calculating pressure drop in valves 
and fittings is given by: 
 







=∆ 2

2
1 VKPfitting ρ  (2)  

 
The K factor is a dimensionless parameter treated as a constant. 
Hence in its normal form, it has no dependence on Reynolds 
number. 

Inspection of Equations 1 and 2 show a relationship 
between friction factor and K factor: 

 

D
LfK ~  (3) 

 
As long as the pipe diameter is constant, the velocity is 
constant. This means that the Reynolds number is also constant 
along a pipe. This further means that the K factors of all valves 
and fittings in a pipe run can be summed together and the 
overall pressure drop for a horizontal pipe is given by 
combining Equations 1 and 2: 
 














 +=∆ ∑ 2

2
1 VK

D
LfPtotal ρ  (4) 

 
 
Equivalent Length Method for Pressure Drop in Valves and 
Fittings 

The Equivalent Length method of calculating pressure 
drop in valves and fittings is based on treating each valve and 
fitting as an extra length of pipe. The “equivalent length” is just 
the pressure drop in the valve or fitting equated to the length of 
pipe required to achieve that same pressure drop. The pressure 
drop for the fitting is thus similar to Equation 1: 

 







=∆ 2

2
1 V

D
L

fP eq
fitting ρ  (5) 

 
where Leq is the equivalent length – a value particular to each 
fitting. In a straight run of pipe, each fitting’s equivalent length 
can be summed together. Combining Equations 1 and 5 relates 
the overall pressure drop in a horizontal pipe using a sum of 
equivalent lengths: 
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Table 2 shows representative K factors and their 

Equivalent Lengths for several types of valves and fittings. 
Note the Cameron Hydraulic Data source references Crane’s 
Tech Paper 410 (e.g., Crane 1998) for this data. 

Also note that Equivalent Length data is given as L/D. 
Hence the Equivalent Length is obtained by multiplying the 
L/D value by the diameter of the pipe. 
 
Table 2. Representative Data for K Factors and Equivalent 
Lengths (Cameron Hydraulic Data, 1995, pp. 3-111 – 3-115, 
table “Friction Loss in Pipe Fittings”) 

Valve or Fitting 
Type 

K  
1 

inch 
(2.5-
cm) 

K  
4 

inch 
(10 
cm) 

K  
12 

inch 
(30 
cm) 

Equiva-
lent 

Length 
L/D  

Standard 90o Elbow 
(threaded) 

0.69 0.51 0.39 30 

Smooth 90o Elbow 
(flanged/welded ) 

    

 r/D =2 0.28 0.2 0.16 12 

 r/D =10 0.69 0.51 0.39 30 

Miter 90o Elbow 1.38 1.02 0.78 60 

Valves     

 Angle (45o full 
line) 

 

1.27 0.94 0.72 55 

 Ball 
 

0.07 0.05 0.04 3 

 Gate 0.18 0.14 0.1 8 

 Globe 7.8 5.8 4.4 340 

 Plug (Straight) 0.41 0.31 0.23 18 

 Check Lift 
(Vmin 40) 

13.8 10.2 7.8 600 

 Check Swing 
(Vmin 35) 

2.3 1.7 1.3 100 

 
 
Laminar Flow Fitting Calculations 

A large majority of industrial pipe systems operate in the 
high-Reynolds number, turbulent flow regime. Therefore K 
factors are oriented towards turbulent flow. Traditionally the 
literature has been ambiguous on how to calculate valve fitting 
losses in laminar flow conditions. For example, Crane (1988) 
states on page 2-8: 

 
“The resistance coefficient K is therefore considered as 
being independent of friction factor and Reynolds 
number and may be treated as a constant for any given 

obstruction (i.e., valve or fitting) in a piping system 
under all conditions of flow, including laminar flow.” 
(Italics added for emphasis) 

and also on page 2-11: 
 

“Equation 2-2 (hL = KV2/2g) is valid for computing the 
head loss due to valves and fittings for all conditions of 
flow, including laminar flow, using resistance coefficient 
K as given in the “K” Factor Table.” (Italics added for 
emphasis) 

Note that the referenced “K Factor Table” uses turbulent 
friction factors (fT) to obtain K. Crane (1988) then refers to 
examples 4-7 and 4-8 (on pages 4-4 and 4-5) which are titled 
“Laminar Flow in Valves, Fittings, and Pipe.” These two 
examples apply the K factors under laminar conditions as if 
they are unchanged from turbulent flow conditions. 

Clearly the intent of this paper is not to criticize Crane’s 
1988 publication, but to discuss some of the literature which 
has contributed to the current state of ambiguity. 

The more recent Crane (2009) reference acknowledges on 
page 2-10 the effect of laminar flow on K factors but does not 
offer any direct guidance. 

 
“This results in an increase in the resistance coefficient 
as the friction factor increases with decreasing Reynolds 
number in the transition and laminar regions…” 

If one takes Equation 3 and applies it to a valve or fitting, 
then the K factor and equivalent length are related as: 

 

D

L
fK eq

=  (7)  

 
Since K factor data is more readily available than 

equivalent length data, it is desirable to use K factor data for 
laminar as well as turbulent flow. However, it has been realized 
for many years that K factor data may not be applicable to 
laminar flow applications. As discussed previously, Crane 
(1988) discussed standard K factor data as being equally 
applicable to laminar and turbulent flow. On the other hand, 
Hooper (1981) argues that standard K factor data is not 
applicable for laminar flow and a modified “Two-K” method 
was advocated. Two-K methods use the standard K factor data 
but also have a second K factor which modifies the Equation 2 
pressure drop calculation in a way that is more accurate for 
laminar flow. The Two-K method calculates pressure drop as: 

 









++= ∞

iD
K

Re
K

K 111  (8)  

 
where K1 is the K factor at Reynolds number of 1, K∞ is the 
high Reynolds number K value at large diameters and Di is the 
internal diameter in inches. Values of K1 were obtained by test 
and included in Hooper (1981). 

To make things even more accurate – at the expense of 
additional complication – a “Three-K” method has been 
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advocated by Darby (2001): 
 









++= 3.0

1 1
i

d
i D

KK
Re
KK  (9)  

 
where K1 means the same as in Equation 8 and Ki and Kd 
combine to determine the turbulent/high Reynolds number K 
factor. Table 3 shows the additional K factors suggested for use 
in the Three-K method. 
 
Table 3. K Factors Constants for Two-K and Three-K Methods 
(Hooper, 1981 and Darby, 2001) 

Valve or Fitting 
Type 

K1 
Eq. 
8, 9  

K∞ 
Eq. 8 

Ki 
Eq. 9 

Kd 
Eq. 9 

Standard 90o Elbow 
(threaded) 

800 0.51 0.14 4.0 

Smooth 90o Elbow 
(flanged/welded ) 

    

 r/D =1.5 800 0.2 0.071 4.2 
 r/D =6 800 N/A 0.075 4.2 
Miter 90o Elbow 1000 1.15 0.27 4.0 
Valves     
 Angle (45o full 

line) 
1000 N/A 0.25 4.0 

Ball 500/ 
300 

0.15 0.017 4.0 
 

 Gate 300 0.1 0.037 3.9 
 Globe 1500 4.0 1.7 3.6 
 Plug (Straight) 300 N/A 0.084 3.9 
 Check Lift 

(Vmin 40) 
2000 10.0 2.85 3.8 

  
Check Swing 
(Vmin 35) 

 
1500 

 
1.5 

 
0.46 

 
4.0 

 
Besides the additional complexity of Equations 8 and 9 

compared to Equation 2, a significant issue is finding data for 
general valves and fittings in order to use Equations 8 and 9. 
One can use the data in Table 3, but what if such data is not 
available? 

What is needed is a way to use readily available K factor 
data in cases of laminar flow, without having to seek out Two-
K and Three-K data. The following discussion covers such a 
method. 

An appropriate equivalent length can be determined from 
standard turbulent condition K factor data by looking at large 
Reynolds numbers and hence fully turbulent conditions using 
Equation 7: 

 

turb

turb
turbeq f

DKL =,  (10) 

 
Assuming for the moment that the equivalent length for laminar 
flow is the same as for turbulent flow, then Equation 10 can be 
used for laminar conditions: 

 

lam

lam
lameq f

DKL =,  (11) 

 
Equating equations 10 and 11 and generalizing the K factor for 
any turbulent or laminar condition obtains: 
 

turb
turb f

fKK =  (12) 

 
Equation 12 will be called the Adjusted Turbulent K Factor 
(ATKF) method. To apply the method, take the standard 
(turbulent) K factor and multiply it by the relevant (upstream) 
pipe friction factor, f, at actual conditions (and Reynolds 
number) and divide it by the turbulent friction factor, fturb, 
evaluated at a very large Reynolds number (10^8) for the 
upstream pipe. 
 
 
COMPARISON OF ATKF  METHOD IN EQUATION 12 
TO PUBLISHED METHODS 
 

A study was undertaken to evaluate Equation 12 against 
published data. A comparison for a 10 foot (3 meter) long, steel 
pipe with fluid with the density of water but various viscosity 
values (to adjust Reynolds number) was performed. Two cases 
were considered: 2-inch (5-cm) and 24-inch (60-cm) diameter. 
Inside each pipe were 12 elbows of r/D = 1.5. 

 
Five cases compared 

1. No fittings in the pipe 
2. Fittings of 12 elbows of 1.5 r/D (with a total K of 3.17 for 

2-inch diameter and 2.02 for 24-inch), but no corrections. 
This assumes the elbow laminar K factor is the same as the 
turbulent K factor. 

3. Darby 3-K method for 12 elbows (see Darby, 2001, pp. 
209) 

4. Equivalent length of 12 elbows with Leq/D = 16 (see 
Darby, 2001, pp. 209 and Cameron Hydraulic Data, 1995) 

5. Adjusted  K factor method, Eq. 12 

Figure 7 shows the results for dimensionless head gradient 
(loss of head per length of pipe) on a log-log plot for the 2-inch 
(5-cm) case. One would not expect Case 1 to match the others, 
as no fittings were included. It is a baseline case included for 
comparison. Hence the head gradient was less than the other 
cases. However Case 1 does illustrate how Case 2 works in the 
laminar regime. It is apparent that Case 2 (with the uncorrected, 
standard turbulent K factor) grossly underpredicts the head loss 
at low Reynolds numbers. Case 2 agrees with Cases 3-5 at high 
Reynolds number, but agrees with Case 1 at low Reynolds 
number. This is a result of using turbulent, high Reynolds 
number K factors for low Reynolds number applications. 

Cases 3, 4 and 5 all agree fairly well throughout the entire 
range of Reynolds numbers.  

Figure 8 shows the results on a log-log plot for 24-inch 
(60-cm) pipe. The trends are the same as in Figure 7, except 
there is a larger difference at Reynolds numbers of 10,000-
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100,000. 
The conclusion from Figures 7 and 8 is that the ATFK 

method from Equation 12 allows reasonable adjustment of 
turbulent K factor pressure loss data for valves and fittings to 
laminar applications. 

Also note that Equation 11 was based on the assumption 
that the Equivalent Length method (Case 4) applies equally to 
laminar and turbulent flow. Inspection of Figures 7 and 8 for 
Cases 3 and 4 shows that use of the Equivalent Length method 
applied to laminar flow gives comparable results to the Three-K 
method (Case 3). Thus, this assumption appears to be quite 
reasonable. 

Because Figures 7 and 8 are log-log plots, the magnitude 
of the differences between Cases 3-5 appear to be smaller than 
they are in an absolute sense. Obviously Case 5 (Equation 12) 
is closer to Cases 3 and 4, while Case 2 (which ignores laminar 
adjustments) is different by 1-2 orders of magnitude at low 
Reynolds numbers. However, at Reynolds numbers equal to 1, 
there is a difference of 25-40% between Cases 3, 4 and 5. 
Arguably, Case 3 (the Three-K method) is the most accurate of 
all the methods. The ATKF method of Case 5 (Equation 12) 
underpredicts the pressure drop by about 25% in Figure 8 for 
24-inch (60-cm) pipe. Tables 4 and 5 show the actual K factors 
behind Figures 7 and 8 so the various methods can be more 
precisely compared.  

It is therefore concluded that the ATKF method of 
Equation 12 is a reasonable substitute for the Three-K method 
over a wide range of Reynolds numbers, and is recommended 
for use should laminar data be unavailable. The Case 5 ATKF 
method is much more accurate than Case 2 at low Reynolds 
numbers. 

Moreover, the ATKF method of Equation 12 is suitable for 
all valve and fitting calculations whether they be laminar, 
turbulent, Newtonian or non-Newtonian. In cases where 
turbulent flow exists, the adjustment factor will just converge to 
“1” so no impact will be observed on the conventional 
calculation methods. In cases where more precise laminar data 
is available for valves and fittings then such data would be 
preferred over the ATKF method. 

Note that the ATKF method agrees better with the Three-K 
method than does the Equivalent Length method at low 
Reynolds numbers. Even so, use of the Equivalent Length 
method in its normal form (Case 4) rather than the standard, 
unadjusted K factor method (Case 2) would have yielded more 
reasonable results in this case study. The entire pumping issue 
might have been avoided. However, similar to the Two-K and 
Three-K methods, Equivalent Length data is not as readily 
available as K factor data and its use in this case study might 
not have been practical. 
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Figure 7. Example for 2-inch (5-cm) pipe of dimensionless 
head gradient for various calculation methods shows Adjusted 
Turbulent K Factor (Equation 12, Case 5) closely follows the 3-
K method (Case 3) and Equivalent Length method (Case 4). 
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Figure 8. Example for 24-inch (60-cm) pipe of dimensionless 
head gradient for various calculation methods shows Adjusted 
Turbulent K Factor (Equation 12, Case 5) closely follows the 3-
K method (Case 3) and Equivalent Length method (Case 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
8



 
  Copyright © 2012 by Turbomachinery Laboratory, Texas A&M University 

Table 4. K factors representing 12 elbows vs. Reynolds 
numbers for Cases 2-5 with 2-inch (5-cm) pipe 

Case 2 3 4 5
Reynolds 
Number

K 
constant

3K 
(Darby)

Equiv. 
Length

ATKF      
Eq. 12

1                       3.2 9,585 12,268 9,367

10                     3.2 962 1,227 1,049

100                   3.2 99.5 123 107

1,000                3.2 13.3 12.3 10.7

10,000              3.2 4.7 6.2 5.4

100,000            3.2 3.8 4.2 3.6

1,000,000         3.2 3.7 3.7 3.2

10,000,000       3.2 3.7 3.7 3.2

100,000,000     3.2 3.7 3.6 3.2
 

 
 
Table 5. K factors representing 12 elbows vs. Reynolds 
numbers for Cases 2-5 with 24-inch (60-cm) pipe 

Case 2 3 4 5
Reynolds 
Number

K 
constant

3K 
(Darby)

Equiv. 
Length

ATKF      
Eq. 12

1                       2.0 9,593 12,272 7,063

10                     2.0 961 1,227 988

100                   2.0 98.2 123 111

1,000                2.0 11.8 12.3 11.3

10,000              2.0 3.2 6.0 5.5

100,000            2.0 2.3 3.5 3.3

1,000,000         2.0 2.3 2.5 2.3

10,000,000       2.0 2.3 2.2 2.1

100,000,000     2.0 2.2 2.2 2.0
 

 
 
 
APPLICATION OF ADJUSTED TURBULENT K 
FACTOR METHOD TO NON-NEWTONIAN FLUIDS 
 

The previous discussion of the ATKF method (Equation 
12) was focused on laminar flow. The applications of interest 
which had the operational problems were not only laminar 
flow, but non-Newtonian laminar flow. However, it appears 
that the ATKF method (Equation 12) works equally well, as 
long as the proper non-Newtonian friction factor, f, is used in 
Equation 12. 

The slurry fluid involved in the operational problems was 
modeled using a power law model. This model uses raw 
rheological data for shear stress and shear rate to obtain power 
law constants Kpl and n. Kpl has units of viscosity and n is 
dimensionless. These constants relate fluid shear stress to shear 

rate as: 
 

n
plK γτ =  (13) 

 
The laminar relationship is given by Darby (2001, p. 165 – 

converted here from a Fanning to a Moody friction factor): 
 

pl
lamplf

Re
64

, =  (14) 

where: 
 

( )

( )( )npl

nn
pl

nnK
VD

132
8Re

2

+
=

− ρ
 (15) 

  
Many power law fluid applications operate in the laminar 

regime, and hence Equation 14 is often the only equation 
needed for friction factor calculation. The complicated part of 
using Equation 14 is the original determination of Kpl and n 
from Equation 13. 

A combined laminar and turbulent friction relationship 
factor for a power law fluid is given by Darby (2001, pp. 166-
167) and is not discussed here for brevity, since the interest in 
this project was laminar flow. 

Considering Equation 14, the important issue to grasp is 
that when using the ATKF method of Equation 12 for non-
Newtonian fluids, it is not merely a laminar friction factor that 
is used. Rather, a laminar, non-Newtonian friction factor as 
calculated by Equation 14 is used in Equation 12. This then 
allows an adjustment of standard, turbulent K factors for use in 
laminar, non-Newtonian applications. 

Fortunately, the ATKF method had been previously 
implemented in the commercial software used in this case study 
as an add-on module (Applied Flow Technology, 2010). The 
team had not been aware of this module and after consultation 
with the software developer expanded the pumping system 
model to apply the ATKF method. 

 
 

ANALYSIS OF CASE HISTORY PUMPING SYSTEMS 
 

The pumping system model calculations were then 
modified to incorporate the ATKF Method (Equation 12). Since 
the goal was to empty the vessels, the calculations for NPSH 
margin were done at zero level. Table 6 shows the values for 
NPSH at zero tank level with the implementation of the ATKF 
Method. 
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Table 6. System Hydraulic Predictions Using Non-Newtonian 
Pipe Friction with ATKF Method Before Modifications to 
Piping 

# 

Flow  

gpm 

(m3/hr) 

ΔP 
Suction 

Pipe 

psid 

 (kPa) 

ΔP 
Suction 

Pipe 
Fittings 

psid 

 (kPa) 

1NPSHA   

ft 

(m) 

NPSHR  

ft 

(m) 

NPSH 
Margin 

ft 

(m) 

1 
107 

(24.3) 

0.6 

(4.1) 

12.3 

(84.8) 

-1.3 

(-0.4) 

3.0 

(0.9) 

-4.3 

(-1.3) 

2 
49 

(11.1) 

0.2 

(1.4) 

16.0 

(110.3) 

-3.0 

(-0.9) 

2.2 

(0.7) 

-5.2 

(-1.6) 

3 
95 

(21.6) 

0.2 

(1.4) 

7.6 

(52.4) 

10.0 

(3.0) 

2.7 

(0.8) 

7.3 

(2.2) 

4 
60 

(13.6) 

1.2 

(8.3) 

11.5 

(79.3) 

-0.2 

(-0.1) 

2.3 

(0.7) 

-2.5 

(-0.8) 

5 
74 

(16.8) 

0.1 

(0.7) 

0.4 

(2.8) 

11.2 

(3.4) 

2.4 

(0.7) 

8.8 

(2.7) 
1Although having a NPSHA less than zero is physically impossible, the authors 
have chosen to show the full impact of the hydraulic losses to give the reader a 
better understanding of the scale of the issue. 
 

Table 6 shows that NPSH would only become an issue on 
pumping systems #1, #2, and #4, which correlates exactly with 
what was experienced in the field. The predictions in Table 1 
and 6 differ only because of the use of the ATKF Method in 
Table 6. Pumping systems #3 and #5 never had an issue with 
leaving a heel in the suction vessel, which also correlates with 
the results using the ATKF Method. At this point, the team felt 
strongly that they had found the reason for the heels left in the 
suction vessels. 

The increased frictional loss predicted by the ATKF 
Method also explains why pumping system #2 did not deliver 
the needed pressure at the user. All of the pipe fittings in the 
discharge line were causing significant pressure drop. In 
addition, the ATKF Method explains that pumping systems #1, 
#4, and #5 had inadequate flow rates due to higher than 
anticipated pressure drop in the discharge piping. 
 
 
CORRECTIVE ACTIONS TAKEN 
 
NPSH Margin Corrections 

In order to correct the NPSH margin issue on pumping 
systems #1, #2, and #4, the suction piping needed to be 
changed. The details of the changes are discussed here: 

• A first priority was given to eliminating branch flow 
tees in the system entirely and, if a change in direction 
of the flow was needed, a large radius elbow with an 
r/D = 3 was used. 

• The number of changes in the piping direction was 
minimized to eliminate elbows and tees. 

• Anywhere there was a change in piping diameter, a 
conical shaped transition was used with a taper angle 
of 15 degrees, if possible. It was important to 
eliminate abrupt changes in piping sizes to minimize 
losses. 

• Changes in pipe sizes were made to increase the pipe 
size at least one size larger than the pump suction. 
Before this change, a couple of the systems had 
suction piping runs that were around 40 ft (12.2 m) 
long and the piping for the whole run was the same 
size as the pump suction. On system #4, there were 
more losses in the suction piping itself that had to be 
corrected to improve the NPSHA. 

The results of the suction piping changes using the ATKF 
Method for both before and after calculations are seen in Table 
7. 

 
Pressure and Flow Inadequacy Corrections 

Pumping #1 and #2 had inadequate flow and pressure 
delivery. These systems had numerous branch flow tees in the 
discharge piping as well as other fittings. The same strategy 
was used in the discharge piping as in the suction piping to 
eliminate or minimize friction losses while analyzing the 
system with the implementation of the ATKF Method. In 
addition, it was predicted that it would be necessary to increase 
the impeller diameter in systems #1, #2, and #4. 

 
 

Table 7. System Hydraulic Predictions Using Non-Newtonian 
Pipe Friction with ATKF Method After Modifications to Piping 
and Pump Impeller Diameter Increase 

# 

Flow  

gpm 

(m3/hr) 

ΔP 
Suction 

Pipe 

psid 

 (kPa) 

ΔP 
Suction 

Pipe 
Fittings 

psid 

 (kPa) 

NPSHA   

ft 

(m) 

NPSHR  

ft 

(m) 

NPSH 
Margin 

ft 

(m) 

1 
135 

(30.7) 

0.5 

(3.4) 

7.1 

(49.0) 

6.3 

(1.9) 

3.4 

(1.0) 

2.9 

(0.9) 

2 
95 

(21.6) 

0.2 

(1.4) 

11.3 

(77.9) 

7.0 

(2.1) 

2.7 

(0.8) 

4.3 

(1.3) 

32 
95 

(21.6) 

0.2 

(1.4) 

7.6 

(52.4) 

10.0 

(3.0) 

2.7 

(0.8) 

7.3 

(2.2) 

4 
78 

(17.7) 

0.5 

(3.4) 

6.8 

(46.9) 

4.3 

(1.3) 

2.4 

(0.7) 

1.9 

(0.6) 

52 
74 

(16.8) 

0.1 

(0.7) 

0.4 

(2.8) 

11.2 

(3.4) 

2.4 

(0.7) 

8.8 

(2.7) 
2No changes were made to this system. 
 

 
RESULTS 
 

After making the piping changes and impeller alterations, 
the results were dramatic: 
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• All suction vessels could be pumped down to nearly 
empty levels. 

• System flows slightly exceeded calculated values. 
Pinch valves were closed in the discharge line to 
regulate flow. 

• The pressure delivered to the user on system #2 
exceeded predicted values. Pinch valves were closed 
in the discharge line to regulate pressure and 
eventually the impeller was trimmed to reduce the 
pressure being delivered to the end user. Pumping 
systems #1 and #4 also delivered higher flows than 
expected, but this was acceptable, since it increased 
the speed of the batch. The additional flows and 
pressure were unexpected, and it was assumed the 
liquid was not going back to its originally pre-sheared 
state after going through the pump. The Metzner-Otto 
rule suggests that a centrifugal pump would apply a 
shear rate of approximately 11 times the rpm of the 
pump. It is possible this much shear caused the fluid to 
stay in a heavily sheared state for quite some time, 
even after the liquid entered regions of lower shear. 
Thus, the viscosity was much lower in the discharge 
line than predicted and thus the hydraulic losses were 
lower. 

The alterations were considered a major success, and it 
allowed the plant to go into full production. The increased flow 
and pressure values were also reflected in the previous products 
made by the plant, and production levels were able to be 
increased for those products as well. 

 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
• For a non-settling slurry operating in or near its laminar 

regime, the method proposed in this paper for estimating 
the pressure drop through fittings provided excellent 
results in the case history described. 

• The NPSH available can be significantly impacted by pipe 
fittings in the suction line. Even though some of these 
fittings may be using for clean out (e.g., branch flow tees), 
their use should be balanced against providing adequate 
NPSH for the pump. 

• Vessel nozzle outlet shapes are critical to the preservation 
of NPSH margins in non-settling slurry pumping systems 
operating in or near the laminar regime. Sharp edge outlets 
should be avoided if possible, and the use of rounded edge 
outlets should be employed. 

• As a guideline, the NPSHA should exceed the NPSHR by a 
minimum of 5 ft (1.5 m), or be equal to 1.35 times the 
NPSHR, whichever is greater. For example, for an NPSHR 
of 10 ft (3.0 m), the NPSHA should be a minimum of 15 ft 
(4.5 m). 

• Downstream fittings can also cause excessive pressure 
drop and flow reduction. It is important to minimize 
fittings where possible in the piping downstream of the 
pump. 

• The shear added by a centrifugal pump to the liquid is 
significant. It is estimated per the Metzner-Otto rule that a 
centrifugal pump shears the fluid at 11 times the rpm of the 

pump. Some fluids do not quickly revert back to their pre-
sheared state after undergoing such a high level of shear, 
and this may cause pressure drop calculations through 
fittings to be overly conservative downstream of the pump. 

• Care should be taken when using hydraulic analysis 
software to ensure that the fittings are being analyzed 
properly from a pressure drop standpoint. 

 
 
NOMENCLATURE 
 
D =   Diameter of pipe 
Di =   Inner Diameter of pipe 
f  =   friction factor 
f lam =   laminar friction factor 
f pl,lam = friction factor for power law under laminar flow 

conditions 
f turb =  turbulent friction factor 

L, Lpipe =  Length of pipe 
Leq =  Equivalent length of pipe due to fittings 
Leq,lam =  Equivalent length of pipe due to fittings under 

laminar flow conditions 
Leq,turb =  Equivalent length of pipe due to fittings under 

turbulent flow conditions 
K =  K factor of valve or fitting 
Kd = Parameter in Three-K method of Equation 9 
Ki = Parameter in Three-K method of Equation 9 
Klam =  K factor of valve or fitting under laminar flow 

conditions 
Kpl =  Constant for power law in Equation 13 
Kturb = K factor of valve or fitting under turbulent flow 

conditions 
K1 =  Parameter in Two-K method of Equation 8 
K∞ =  Parameter in Two-K method of Equation 8 
n =  Constant for power law in Equation 13 
NPSH =  Net positive suction head (m or ft of liquid) 
NPSHA =  Net positive suction head available (m or ft of 

liquid) 
NPSHR =  Net positive suction head required (m or ft of 

liquid) 
Re =  Reynolds number 
Repl = Reynolds number for power law, Equation 15 
V =  velocity of liquid 
ρ  =  density of liquid 
γ  =  shear rate 
τ  = shear stress 
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